Skip to main content
Log in

Ultrastructure and adaptation in the retina of Aglais urticae (Lepidoptera)

  • Published:
Zoomorphology Aims and scope Submit manuscript

Summary

The apposition eye of Aglais urticae is composed of eucone ommatidia. Serial sectioning of blocks from the laterofrontal and lateroventral eye regions and mapping at different levels revealed that there is no torsion of whole ommatidia along their long axes.

The sensory part of the ommatidium comprises nine retinula cells. The most significant features of the complicated rhabdom structure (diagrammed in Fig. 3) are as follows. The vertically aligned receptor cells V1 and V5, which become axonal at the level at which the ninth cell begins, have microvilli arranged in bundles. The microvilli bundles of these cells generally make an angle α between 30 and 55° on one or the other side of the dorsoventral axis in the ommatidium cross section. The two orientations alternate regularly along the length of the rhabdom. The repeated sweeps of these bundles in regular intervals in combination with the curvature of the V-cell microvilli is considered to be a “substitute” for rhabdomere twisting. The four diagonally aligned receptor cells D2,4,6,8 have rhabdomers that are continuous, though of variable size. These rhabdomeres, like those of the horizontally aligned cells (H3 and H7), extend along the entire rhabdom, though there is a small (1–2 μm) interruption in the H-cell rhabdomeres; the latter have the most constant orientation. Pigment granules are most abundant in the D cells, followed by the H cells and finally the V cells. RC9 lacks pigments.

Light- and dark-adaptation experiments reveal marked horizontal migration of the retinula-cell pigment (pupil reaction) and slight vertical migration. Monochromatic adaptation experiments at wavelengths λ=342, 436, 522, 578, and 626 nm indicate special sensitivity of the D-cells around λ-520 nm. There are indications for sensitivity of V cells in the UV, and possibly of H cells in the blue. The H cells are regarded as suited for the detection of polarized light. The functional significance of these findings is discussed and compared with what is known of other butterfly eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alaibak A (1981) Verhaltensversuche zur Farbpräferenz von Aglais urticae L. (Lepidoptera). Diplomarbeit, Ludwig-Maximilian-Universität München

  • Altner I, Burkhardt D (1981) Fine structure of the ommatidia and occurrence of rhabdomeric twist in the dorsal eye of male Bibio marci (Diptera, Nematocera, Bibionidae). Cell Tissue Res 215:607–623

    Google Scholar 

  • Bernard GD (1979) Red-absorbing visual pigment of butterflies. Science 203:1125–1127

    Google Scholar 

  • Bernhard CG, Miller WH, Moller AR (1965) The insect corneal nipple array. Acta Physiol Scand. 63:243

    Google Scholar 

  • Braitenberg V (1970) Ordnung und Orientierung der Elemente im Sehsystem der Fliege. Kybernetik 7:235–242

    Google Scholar 

  • Eguchi E, Watanabe K, Hariyama T, Yamamoto K (1982) A comparison of electrophysiologically determined spectral responses in 35 species of Lepidoptera. J Insect Physiol 28:675–682

    Google Scholar 

  • Gemperlein R (1980) Fourier Interferometric Stimulation (FIS). A new Method for the Analysis of Spectral Processing in Visual Systems. — In: MEDINFO 80, Proc of the 3rd World Conf on Medical Informatics. Tokyo, September 29–October 4

  • Gemperlein R (1982) The determination of spectral sensitivities by Fourier interfereometric stimulation (FIS). Doc Ophthalmol Proc Ser 31:23–29

    Google Scholar 

  • Glauert AM (1965) The fixation and embedding of biological specimens. In Kay DH (ed) Techniques for electron microscopy. Davis FA. Comp Philadelphia pp 166–212

  • Gordon WC (1977) Microvillar orientation in the retina of the nymphalid butterfly. Z Naturforsch 32c:662–664

    Google Scholar 

  • Grundler OJ (1974) Electronmicroscopic studies on the retina of the honeybee (Apis mellifica). I Investigations on the morphology and arrangement of the nine retinula cells in ommatidia of different eye regions and on the perception of linear polarized light. Cytobiologie 9:203–220

    Google Scholar 

  • Horridge GA, Marcelja L, Jahnke R, Matic T (1983) Single electrode studies on the retina of the butterfly Papilio. J Comp Physiol 150:271–294

    Google Scholar 

  • Ilse D (1965) Versuche zur Orientierung von Tagfaltern. Verh Dtsch Zool Ges, Jena 59:306–319

    Google Scholar 

  • Kolb G, Autrum H (1972) Die Feinstruktur im Auge der Biene bei Hell-und Dunkeladaptation. J Comp Physiol 77:113–125

    Google Scholar 

  • Kolb G (1977) The structure of the eye of Pieris brassicae L. (Lepidoptera). Zoomorphologie 87:123–146

    Google Scholar 

  • Kolb G (1978) Zur Rhabdomstruktur des Auges von Pieris brassicae L. (Insecta, Lepidoptera). Zoomorphologie 91:191–200

    Google Scholar 

  • Kolb G, Schwarz G (1980) Hell- und Dunkeladaptation der Augen von Pieris brassicae L. (Lepidoptera). Zoomorphologie 94:265–278

    Google Scholar 

  • Kolb G, Scholz W (1982) Ultraviolet reflections and sexual dimorphism among butterflies. II. Europ Congr of Entomology, Kiel

  • Langer H, Hamann B, Meinecke CC (1979) Tetrachromatic visual system in the moth Spodoptera exempta (Insecta: Noctuidae). J Comp Physiol 129:235–239

    Google Scholar 

  • Maida M (1977) Microvillar orientation in the retina of a pierid butterfly. Z Naturforsch 32c:660–661

    Google Scholar 

  • Menzel R, Blakers M (1975) Functional organisation of an insect ommatidium with fused rhabdom. Cytobiologie 11:279–289

    Google Scholar 

  • Miller WH, Bernard GD (1968) Butterfly Glow. J Ultrastruct Res 24:286–294

    Google Scholar 

  • Ribi WA (1976) The first optic ganglion of the bee. II. Topographical relationships of the monopolar cells within and between cartridges. Cell Tissue Res 171:359–373

    Google Scholar 

  • Ribi WA (1978) Ultrastructure and migration of screening pigments in the retina of Pieris rapae L. (Lepidoptera, Pieridae) Cell Tissue Res 191:57–73

    Google Scholar 

  • Richardson KC, Jarett L, Finke EH (1960) Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol 35:313–323

    Google Scholar 

  • Smola U (1977) Das Twisten der Rhabdomere der Sehzellen im Auge von Calliphora erythrocephala. Verh Dtsch Zool Ges 70:234

    Google Scholar 

  • Smola U, Tscharntke H (1979) Twisted rhabdomeres in the dipteran eye. J Comp Physiol 133:291–297

    Google Scholar 

  • Smola U, Wunderer H (1981) Fly rhabdomeres twist in vivo. J Comp Physiol 142:43–49

    Google Scholar 

  • Stavenga DG, Numan JA J, Tinbergen J, Kuiper JW (1977) Insect pupil mechanisms. II. Pigment migration in retinula cells of butterflies. J Comp Physiol 113:73–93

    Google Scholar 

  • Steiner A (1982) Fourierinterferometrische Messung der spektralen Empfindlichkeit von zwei Schmetterlingsarten (Pieris brassicae and Aglais urticae). Neurobiologentagung Göttingen

  • Steiner A (1984) Die lineare und nichtlineare Analyse biologischer Sehsysteme mit einfachen Sinusreizen und Fourierinterferometrischer Stimulation (FIS). Dissertation, Ludwig-Maximilian-Universität München

  • Wehner R (1976) Polarized-light navigation by insects. Sci Am 235:106–115

    Google Scholar 

  • Williams CB (1961) Die Wanderflüge der Insekten. Paul Parey Verlag, Hamburg

    Google Scholar 

  • Yagi N, Koyama N (1963) The compound eye of lepidoptera. Approach from organic evolution. Shinkyo-Press & Co Ltd

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by grants from the Deutsche Forschungsgemeinschaft and the Stiftung Volkswagenwerk

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolb, G. Ultrastructure and adaptation in the retina of Aglais urticae (Lepidoptera). Zoomorphology 105, 90–98 (1985). https://doi.org/10.1007/BF00312143

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00312143

Keywords

Navigation