Skip to main content
Log in

A transferable interatomic potential for crystalline phases in the system MgO—SiO2

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

A central interatomic potential model is presented for compounds in the binary system MgO-SiO2. The potential, of a simple form which consists of a Coulombic term, a Born repulsive term, and a Van der Walls term for oxygen-oxygen interactions, is designed to predict the properties of magnesium silicates containing Si in octahedral and tetrahedral coordination. This is achieved by fitting simultaneously to forsterite and MgSiO3 ilmenite crystal structure data, and fixing the partial ionic charges using elastic data for forsterite. The potential is found to transfer successfully to γ-Mg2SiO4 and MgSiO3 perovskite. The potential results in local structural errors around the bridging oxygen ions in clinoenstatite and β-Mg2SiO4.

The predicted structure for MgSiO3 garnet is similar to the experimentally measured structure of the MnSiO3 analogue. Calculated elastic constants average to K=2.41 Mbar and μ=1.44 Mbar for the bulk and shear moduli of MgSiO3 perovskite, and K=1.87 Mbar and μ=1.10 Mbar for the bulk and shear moduli of MgSiO3 garnet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akagoi M, Navrotsky A, Yagi T, Akimoto S (in press) Pyroxenegarnet transformation: thermochemistry and elasticity of garnet solid solutions, and application to mantle models. US — Japan Seminar on High Pressure Research

  • Angell CA, Cheeseman PA, Tamaddon S (1982) Pressure enhancement of ion mobilities in liquid silicates from computer simulation studies to 800 kilobars. Science 218:885–887

    Google Scholar 

  • Boisen MB, Gibbs GV (1985) Mathematical Crystallography. MSA Reviews in Mineralogy 15

  • Born M, Huang K (1954) Dynamical theory of crystal lattices. Clarendon Press, Oxford

    Google Scholar 

  • Brawer SA (1981) Defects and fluorine diffusion in sodium fluoroberyllate glass: a molecular dynamics study. J Chem Phys 75:3516–3521

    Google Scholar 

  • Busing WR (1970) An interpretation of the structures of alkaline earth chlorides in terms of interionic forces. Trans Am Crystallogr Assoc 6:57–72

    Google Scholar 

  • Catlow CRA, Thomas JM, Parker SC, Jefferson DA (1982) Simulating silicate structures and the structural chemistry of pyroxenoids. Nature 295:659–662

    Google Scholar 

  • Endo S, Akai T, Akahama Y, Wakatsuki M, Nakamura T, Tomii Y, Koto K, Ito Y, Tokonami M (1986) High temperature X-ray study of single crystal stishovite synthesized with Li2WO4 as flux. Phys Chem Minerals 13:146–151

    Google Scholar 

  • Fujino K, Sasaki S, Takeuchi Y, Sadanaga R (1981) X-ray determination of electron distributions in forsterite, fayalite, and tephroite. Acta Crystallogr B37:513–518

    Google Scholar 

  • Fujino K, Momoi H, Sawamoto H, Kumazawa M (1986) Crystal structure and chemistry of MnSiO3 tetragonal garnet. Am Min 71:781–785

    Google Scholar 

  • Gilbert TL (1968) Soft-sphere model for closed-shell atoms and ions. J Chem Phys 49:2640–2645

    Google Scholar 

  • Horiuchi H, Sawamoto H (1981) β-Mg2SiO4: single-crystal x-ray diffraction study. Am Mineral 66:568–575

    Google Scholar 

  • Horiuchi H, Hirano M, Ito E, Matsui Y (1982) MgSiO3 (ilmenitetype): Single crystal X-ray diffraction study. Am Mineral 67:788–793

    Google Scholar 

  • Horiuchi H, Ito E, Weidner DJ (1987) Perovskite-type MgSiO3: Single-crystal x-ray diffraction study. Am Mineral 72:357–360

    Google Scholar 

  • Jeanloz R (1981) Majorite: vibrational and compressional properties of a high pressure phase. J Geophys Res 86:6171–6179

    Google Scholar 

  • Kato T, Kumazawa M (1985) Garnet phase of MgSiO3 filling the pyroxene-ilmenite gap at very high temperature. Nature 316:803–805

    Google Scholar 

  • Kubicki JD, Lasaga AC (1987) Molecular dynamics simulations of Mg2SiO4 and MgSiO3 melts: structural and diffusivity changes with pressure (abstract). EOS Trans Am Geophys Union 68:436

    Google Scholar 

  • Kudoh Y, Ito E, Takeda H (1987) Effect of pressure on the crystal structure of perovskite-type MgSiO3. Phys Chem Minerals 14:350–354

    Google Scholar 

  • Kushiro I (1976) Changes in viscosity and structure of melt of NaAlSi2O6 composition at high pressures. J Geophys Res 81:6347–6350

    Google Scholar 

  • Lasaga AC, Gibbs GV (1987) Applications of quantum mechanical potential surfaces to mineral physics calculations. Phys Chem Minerals 14:107–117

    Google Scholar 

  • Matsui M, Akaogi M, Matsumoto T (1987) Computational model of the structural and elastic properties of the ilmenite and perovskite phases of MgSiO3. Phys Chem Minerals 14:101–106

    Google Scholar 

  • Matsui Y, Kawamura K, Syono Y (1982) Molecular dynamics calculations applied to silicate systems: Molten and vitreous MgSiO3 and Mg2SiO4 under low and high pressures. In: Akimoto S and Manghnani MH, (eds), High pressure research in geophysics. Center for Academic Publications, Tokyo, 511–524

    Google Scholar 

  • Navrotsky A (1987) High pressure transitions in silicates and related compounds. Prog Solid State Chem 17:53–86

    Google Scholar 

  • Novak GA, Gibbs GV (1971) The crystal chemistry of the silicate garnets. Am Mineral 56:791–825

    Google Scholar 

  • Ohashi Y (1984) Polysynthetically twinned structures of enstatite and wollastonite. Phys Chem Minerals 10:217–229

    Google Scholar 

  • O'Keeffe M (1979) Madelung potentials and the sizes of ions in oxides and nitrides. Acta Crystallogr A35:776–779

    Google Scholar 

  • Parrinello M, Rahman A (1980) Crystal structure and pair potentials: a molecular dynamics study. Phys Rev Lett 45:1196–1199

    Google Scholar 

  • Price GD, Parker SC (1984) Computer simulations of the structural and physical properties of the olivine and spinel polymorphs of Mg2SiO4. Phys Chem Minerals 10:209–216

    Google Scholar 

  • Price GD, Parker SC, Leslie M (in press) The lattice dynamics and thermodynamics of the Mg2SiO4 polymorphs. Phys Chem Minerals

  • Sasaki S, Prewitt CT, Sato Y, Ito E (1982) Single crystal x-ray study of Mg2SiO4. J Geophys Res 87:7829–7832

    Google Scholar 

  • Soules TF (1979) A molecular dynamics calculation of the structure of sodium silicate glasses. J Chem Phys 71:4570–4578

    Google Scholar 

  • Suzuki I, Anderson OL, Sumino Y (1983) Elastic properties of single-crystal forsterite Mg2SiO4, upt to 1200 K. Phys Chem Minerals 10:38–46

    Google Scholar 

  • Wallace D (1972) Thermodynamics of crystals. John Wiley and Sons, New York

    Google Scholar 

  • Weidner DJ, Bass JD, Ringwood AE, Sinclair W (1982) The single-crystal elastic moduli of stishovite. J Geophys Res 87:4740–4746

    Google Scholar 

  • Weidner DJ, Sawamoto H, Sasaki S, Kumazawa M (1984) Single-crystal elastic properties of the spinel phase of Mg2SiO4. J Geophys Res 89:7852–7860

    Google Scholar 

  • Weidner DJ, Ito E (1985) Elasticity of MgSiO3 in the ilmenite phase. Phys Earth Planet Inter 40:65–70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leinenweber, K., Navrotsky, A. A transferable interatomic potential for crystalline phases in the system MgO—SiO2 . Phys Chem Minerals 15, 588–596 (1988). https://doi.org/10.1007/BF00311030

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00311030

Keywords

Navigation