Skip to main content
Log in

Constraints on phase diagram topology for the system CaO−MgO−SiO2−CO2−H2O

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Published phase diagrams for the siliceous carbonate system CaO−MgO−SiO2−CO2−H2O are contradictory because of different estimates of the relative stability of magnesite. Experimental data on magnesite are too ambiguous to determine the validity of these estimates. Therefore, field evidence is used to select the correct phase diagram topology for siliceous carbonate and carbonate ultramafic rocks at pressures of about 2–5 kbar. The primary selection criterion is provided by the existence of the stable assemblage talc+dolomite+forsterite+tremolite+antigorite, which occurs in the Bergell contact aureole and Swiss Central Alps. Field evidence also is used to argue that the reaction magnesite+quartz=enstatite must occur at lower temperature than the reaction dolomite+quartz=diopside. T-X CO 2 and P CO 2-T phase diagrams consistent with these observations are calculated from experimental and thermo-dynamic data. For antigorite ophicarbonate rocks, remarkable agreement is obtained between the spatial distribution of low variance mineral assemblages and the calculated diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berman RG (1988) Internally consistent thermodynamic data for minerals in the system Na2O−K2O−CaO−MgO−FeO−Fe2O3−SiO2−TiO2−H2O−CO2 J Petrol 29:445–552

    Google Scholar 

  • Bucher-Nurminen K (1988) Metamorphism of ultramafic rocks in the central Scandinavian Caledomides. Nor Geol Unders Spec Publ 31:86–95

    Google Scholar 

  • Carmichael DM (1978) Metamorphic bathozones and bathograds: a measure of the depth of post-metamorphic uplift and erosion on the regional scale. Am J Sci 278:769–797

    Google Scholar 

  • Chernosky JV, Berman RG, Bryndzia LT (1988) Stability, phase relations and thermodynamic properties of chlorite and serpentine group minerals. Rev Mineral 19:295–346

    Google Scholar 

  • Chernosky JV, Berman RG (1989) Experimental reversal of the equilibrium: clinochlore+2 magnesite=3 forsterite+spinel+2 CO2+4 H2O and revised thermodynamic properties for magnesite. Am J Sci 289:249–266

    Google Scholar 

  • Connolly JAD (1989) Calculation of multivariable phase diagrams: a computer strategy based on generalized thermodynamics. Am J Sci (in review)

  • Connolly JAD, Kerrick DM (1987) An algorithm and computer program for calculating computer phase diagrams. CALPHAD 11:1–55

    Google Scholar 

  • Connolly JAD, Trommsdorff V, Philipp R (1989) A revised Gibbs free energy for Magnesite. Am J Sci (in review)

  • Cornelius HP (1925) Über einige Gestiene der, Fedozserie aus dem Disgraziagebiet (Rhaetische Alpen). N Jahrb Mineral Beil Bd LII Abt A:1–50

  • Evans BW, Guggenheim S (1988) Talc, pyrophyllite and related minerals. Rev Mineral 19:225–294

    Google Scholar 

  • Evans BW, Trommsdorff V (1974) Stability of enstatite+talc and CO2-metasomatism of metaperidotite, Val d'Efra, Lepontine Alps Am J Sci 274:274–296

    Google Scholar 

  • Evans BW, Trommsdorff V (1983) Flourine hydroxyl titanian clinohumite in alpine recrystalized peridotite: compositional controls and petrologic significance. Am J Sci 283-A:355–369

    Google Scholar 

  • Evans BW, Johnnes W, Oterdoom H, Trommsdorff V (1976) Stability of chrysotile and antigorite in the serpentine multisystem. Schweiz Mineral Petrogr Mitt 56:79–93

    Google Scholar 

  • Goldsmith JR, Heard HC (1961) Subsolidus phase relations in the system CaCO3−MgCO3. J Geol 69:45–74

    Google Scholar 

  • Harker RI, Tuttle OF (1955) Studies in the system CaO−MgO−CO2, Part I: The thermal dissociation of calcite, dolomite and magnesite. Am J Sci 253:209–224

    Google Scholar 

  • Helgeson HC, Delany JM, Nesbitt HW, Bird DK (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sci 278-A:1–229

    Google Scholar 

  • Hemingway BS, Robie RA, Fisher JR, Wilson JH (1977) The heat capacities of Gibbsite, Al(OH)3, between 13 and 480 K and Magnesite, MgCO3, between 13 and 380 K and their standard entropies at 298.15 K and the heat capacities of Calorimetry Conference Benzoic Acid between 12 and 316 K. US Geol J Res 5:797–806

    Google Scholar 

  • Holloway JR (1977) Fugacity and activity of molecular species in supercritical fluids. In: D Fraser (ed) Thermodynamics in geology. Reidel, Boston, pp 161–181

    Google Scholar 

  • Johannes W, Metz P (1968) Experimentelle Bestimmung von Gleichgewichtsbeziehungen im System MgO−CO2−H2O. N Jb Mineral Monatsh 112:15–26

    Google Scholar 

  • Kerrick DM, Jacobs GK (1981) A modified Redlich-Kwong equation for H2O, CO2 mixtures at elevated pressures and temperatures. Am J Sci 281:735–767

    Google Scholar 

  • Ohnmacht W (1974) Petrogenesis of carbonate orthopyroxenites (sagvandites) and related rocks from Troms, Northern Norway. J Petrol 15:303–323

    Google Scholar 

  • Peretti A (1988) Occurrence and stabilities of opaque minerals in the Malenco serpentinite (Sondrio, Northern Italy). Ph D Thesis ETH Zurich No 8740

  • Pfeifer HR (1979) Fluid-Gesteins-Interaktion in metamorphen Ultramafititen der Zentralalpen. Ph D Thesis ETH Zurich No 6379

  • Philipp R (1988) Phasenbeziehungen in System MgO−H2O−CO2−NaCl. Ph D Thesis ETH Zurich No 8641

  • Philipp R, Girsperger S (1989) Experimental determination of phase transitions in the system MgO−H2O−CO2 using a pressure-analysis method. Contrib Mineral Petrol (in review)

  • Schramke JA, Kerrick DM, Blencoe JG (1982) The experimental determination of the brucite=periclase+water equilibrium with a new volumetric technique. Am Mineral 67:269–276

    Google Scholar 

  • Schreyer W, Ohnmacht W, Mannchen J (1972) Carbonate orthopyroxenites (sagvandites from Troms, Northern Norway). Lithos 5:345–364

    Google Scholar 

  • Skippen GB (1971) Experimental data for reactions in siliceous marbles. J Geol 79:457–481

    Google Scholar 

  • Skippen GB (1974) An experimental model for low pressure metamorphism of siliceous dolomitic marble. Am J Sci 274:487–509

    Google Scholar 

  • Skippen GB, Hutcheon I (1974) The experimental calibration of continuous reactions in siliceous carbonate rocks. Can Mineral 12:327–333

    Google Scholar 

  • Skippen GB, Trommsdorff V (1986) The influence of NaCl and KCl on phase relations in metamorhosed carbonate rocks. Am J Sci 286:81–104

    Google Scholar 

  • Trommsdorff V, Evans BW (1974) Alpine metamorphism of peridotitic rocks. Schweiz Mineral Petrogr Mitt 56:79–93

    Google Scholar 

  • Trommsdorff V, Evans BW (1972) Progressive metamorphism of antigorite schist in the Bergell tonalite aureole. Am J Sci 272:423–437

    Google Scholar 

  • Trommsdorff V, Evans BW (1977a) Antigorite-Ophicarbonates: Contact metamorphism in Valmalenco, Italy Contrib Mineral Petrol 62:301–312

    Google Scholar 

  • Trommsdorff V, Evans BW (1977b) Antigorite-Ophicarbonates: PHase relations in a portion of the system CaO−MgO−SiO2−H2O−CO2. Contrib Mineral Petrol 60:39–56

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trommsdorff, V., Connolly, J.A.D. Constraints on phase diagram topology for the system CaO−MgO−SiO2−CO2−H2O. Contr. Mineral. and Petrol. 104, 1–7 (1990). https://doi.org/10.1007/BF00310641

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00310641

Keywords

Navigation