Skip to main content
Log in

Lead in blood and tissues of mice after administration of low lead doses

  • Original Investigations
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Lead levels in whole blood could be determined reliably up to a lower limit of 2 μg/100 ml blood, using a modified micromethod of the graphite tube furnace technique. Lead contents of various tissues were also determined by using the automated graphite tube furnace after wet ashing of the organs with nitric acid in autoclaves.

Animal experiments with mice showed no measurable increase in blood lead level after a single, 10- or 30-days oral administration of lead in doses of 10–1000 μg lead acetate/kg body weight/day. However, these doses led to a rise in tissue lead content. There was a clear dependence of tissue lead content on type of organ examined, lead dose and duration of lead exposure.

According to our experiments, the threshold dose which leads to a long-term increase in tissue lead content is assumed to be about 100 μg lead acetate/kg body weight/day, orally administered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson A (1976) Interferences from sulpher in the determination of lead with the graphite furnace. Atom Absorp Newslett 15: 71–72

    Google Scholar 

  • Bodenseewerk, Perkin-Elmer & Co GmbH Überlingen (1975) Beschreibung und Bedienungsanleitung Autoklav 3

  • Bruenger FW, Stevens W, Stover BJ (1973) The association of Pb210 with constituents of erythrocytes. Health Phys 25: 37

    Google Scholar 

  • Chisolm JJ Jr (1978) Is lead poisoning still a problem? Clin Chem 23: 252–255

    Google Scholar 

  • Chisholm JJ Jr, Barltrop D (1979) Recognition and management of children with increased lead absorption. Arch Dis Child 54: 249–262

    Google Scholar 

  • Conrad ME, Barton JC (1978) Factors affecting the absorption and excretion of lead in the rat. Gastroenterology 74: 731–740

    Google Scholar 

  • ECC (1975) Health protection directorate, Lucembourg. Biological sampling for monitoring population exposure to lead. Galway, Irland, July 7–8

  • Evenson MA, Pendergast DD (1974) Rapid ultramicro direct determination of erythrocyte lead concentration by atomic absorption spectrometry, with use of a graphite tube furnace. Clin Chem 20: 162–171

    Google Scholar 

  • Fernandez FJ (1975) Micromethod for lead determination in whole blood by atomic absorption, with use of the graphite furnace. Clin Chem 21: 558–561

    Google Scholar 

  • Fernandez FJ (1978) Automated microdetermination of lead in blood. Atom Absorp Newslett 17: 115–116

    Google Scholar 

  • Garnys VP, Matousek JP (1975) Correction of spectral interference with determination of lead in blood by non-flame atomic absorption spectrometry. Clin Chem 21: 891–893

    Google Scholar 

  • Garnys VP, Smythe LE (1975) Fundamental studies on improvement of precision and accuracy in flameless atomic absorption spectrometry using the graphite tube atomiser. Talanta 22: 881–887

    Google Scholar 

  • Gorsuch TT (1970) The destruction of organic matter. Pergamon Press, New York, p 93

    Google Scholar 

  • Hammond PB (1977) Exposure of humans to lead. Ann Rev Pharmacol Toxicol 17: 197–214

    Google Scholar 

  • Hanna TL, Dietzler DN, Smith C, Gupta S, Zarkowsky HS (1976) Erythrocyte porphyrin analysis in the detection of lead poisoning in children. Evaluation of four methods. Clin Chem 22: 161–168

    Google Scholar 

  • Knutti R, Balsiger C, Schlatter C (1977) Probleme der Metall-Spurenanalyse im ppb-Bereich in biologischem Material am Beispiel der Bestimmung von Blei im Blut mit Graphitrohr-Atomabsorptionsspektrometrie. Mitt Gebiete Lebensm Hyg 68: 78–85

    Google Scholar 

  • Kotz L, Kaiser G, Tschöpel P, Tölg G (1972) Aufschluß biologischer Matrices für die Bestimmung sehr niedriger Spurenelementgehalte bei begrenzter Einwaage mit Salpetersäure unter Druck in einem Teflongefäß. Fresenius' Z Anal Chem 260: 207–209

    Google Scholar 

  • Langmyhr FJ, Kjuus I (1978) Direct atomic absorption spectrometric determination of cadmium, lead and manganese in bone and lead in ivory. Anal Chim Acta 100: 139–144

    Google Scholar 

  • Lauwerys R, Buchet JP, Roels H, Berlin A, Smeets J (1975) Intercomparison program of lead, mercury and cadmium analysis in blood, urine and aqueous solutions. Clin Chem 21: 551–557

    Google Scholar 

  • Machatta G, Binder R (1973) Bestimmung von Blei, Thallium, Zink und Cadmiumspuren in biologischem Material mittels flammenloser Atomabsorption. Z Rechtsmed 73: 29–34

    Google Scholar 

  • Maher CC, Roettgers DM, Conlon HJ (1979) Interlaboratory comparison of blood lead determination. Am Ind Hyg Assoc J 40: 230–237

    Google Scholar 

  • Manning DC, Slavin W (1978) Determination of lead in a chloride matrix. Atom Absorp Newslett 17: 43–46

    Google Scholar 

  • Nise G, Vesterberg O (1978) Blood lead determination by flameless atomic absorption spectroscopy. Clin Chem Acta 84: 129–136

    Google Scholar 

  • Reigart JR, Whitlock NH (1976) Longitudinal observations of the relationship between free erythrocyte porphyrins and whole blood lead. Pediatrics 57: 54–59

    Google Scholar 

  • Roschnick RK (1973) The determination of lead in foods by atomic absorption spectometry. Analyst 98: 596–604

    Google Scholar 

  • Schlick E, Kretz FJ (1978) Die Wirkung von Blei in kleinen Dosen auf die erythrozytäre D-ALA-D und das RES der Maus. Inaugural-Dissertation, Fakultät für klinische Medizin, Mannheim

    Google Scholar 

  • Schlick E, Friedberg KD (1980) The action of small doses of lead on erythrocyte d-aminolevulinic acid dehydratase in the mouse. Arch Toxicol 43: 213–220

    Google Scholar 

  • Schrammel P (1973) Determination of eight metals in the international biological standard by flameless atomic absorption spectrometry. Anal Chim Acta 67: 69–77

    Google Scholar 

  • Szadkowski D, Meier U, Lehner G (1979) Tierexperimentelle Untersuchungen zum toxikokinetischen Verhalten von Blei. Inn Med 6: 217–222

    Google Scholar 

  • Therrel BL, Drosche JM, Dziuk TW (1978) Analysis for lead in undiluted blood by tantalum ribbon atomic absorption spectroscopy. Clin Chem 24: 1182–1185

    Google Scholar 

  • Thompson KC, Wagstaff K, Wheatstone KC (1977) Method for the minimisation of matrix interferences in the determination of lead and cadmium in non-saline waters by atomic absorption spectrometry, using electrothermal atomisation. Analyst 102: 310–313

    Google Scholar 

  • Volosin MT, Kubasik NP, Sine HE (1975) Use of the carbon rod atomiser for analysis of lead in blood: Three methods compared. Clin Chem 21: 1986–1987

    Google Scholar 

  • Willes RF, Lok E, Truelove JF (1977) Retention and tissue distribution of Pb210 (NO3)2 administered orally to infant and adult monkeys. J Toxikol Environ Health 3: 395–406

    Google Scholar 

  • Winneke G, Kasta J (1974) Neurotoxische und verhaltenstoxische Aspekte der Bleiwirkung in Lufthygiene und Silikoseforschung 1973. Gesellschaft zur Förderung der Lufthygiene und Silikoseforschung e. V., Düsseldorf (Hrsg). Essen, Girardet, p 91

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We are thankful to Prof. Dr. H. Rüssel, Hannover and Dr. M. Fleischer, Saarbrücken for helping in comparison studies.

We would also like to thank Mr. H. Dick and Miss. Ch. Hecker for the technical and laboratory assistance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlick, E., Kamran, M.A. & Friedberg, K.D. Lead in blood and tissues of mice after administration of low lead doses. Arch Toxicol 46, 221–232 (1980). https://doi.org/10.1007/BF00310438

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00310438

Key words

Navigation