Skip to main content
Log in

Aluminous goethite: A mössbauer study

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Mössbauer measurements at 300 K, 77 K and 4.2 K and X-ray data are presented for synthetic aluminous goethites (α Fe1−x Al x OOH) in two series containing up to 15 mole percent aluminium (hydrothermal preparation) and 19 mole percent aluminium (low-temperature preparation). The Mössbauer spectra for specimens at 300 K and 77 K display broadened and relaxed line-shapes with the relaxation rate increasing with aluminium substitution, whereas all the 4.2 K spectra can be described by a single magnetically split spectrum. At 4.2 K the magnitude of this splitting is 505 kOe for pure goethite and it decreases by 0.52 kOe per mole percent aluminium substitution. The absolute value of the recoil-free fraction f at 4.2 K has been measured for pure goethite and for aluminous goethites containing 7, 15 and 19 mole percent aluminium; it increases from f=0.69±0.02 to f=0.89±0.02 in this range. The increase is attributed to a stiffening of the goethite lattice as it contracts to accommodate the smaller aluminium ion. At 300 K f is found to decrease from f=0.65±0.05 for pure goethite to f=0.50±0.03 for goethite with 19 mole percent aluminium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bean CP, Livingston JD (1959) Superparamagnetism. J Appl Phys (Suppl) 30:120–129

    Google Scholar 

  • Blume M, Tjon JA (1968) Mössbauer spectra in a fluctuating environment. Phys Rev 165:446–456

    Google Scholar 

  • Bowen LH (1979) Mössbauer spectroscopy of ferric oxides and hydroxides. Mössbauer effect reference and data journal 2:76–94

    Google Scholar 

  • Brown N, Tremblay RJ (1974) Some studies of the iron mineral transformations during high temperature digestion of Jamaica bauxite. Light Met 3:825–844

    Google Scholar 

  • Collepardi M, Massida L, Rossi G (1972) Ageing of iron oxide gels. Trans Inst Min Met 81:43–46

    Google Scholar 

  • Collepardi M, Massida L, Rossi G (1973) Effect of pH and salt addition on ageing of ferric oxide gels. Trans Inst Min Met 82:88–91

    Google Scholar 

  • Dauwe C, Govaert A, Renaud B (1979) Size distribution and surface effects in ultrafine particle NGR spectra. J Phys (Paris) Colloq C2 40:97 (abstract)

    Google Scholar 

  • Davey BG, Russell JD, Wilson MJ (1975) Iron oxide and clay minerals and their relation to colours of red and yellow podzolic soils near Sydney, Australia. Geoderma 14:125–138

    Google Scholar 

  • Davis CE (1976) Recent advances in the understanding of the mineralogy of Jamaican bauxites. Light Met 2:185–200

    Google Scholar 

  • Disatnik Y (1968) The calculation of the Mössbauer recoil-free fraction. In: Danon J (ed) Lectures on the Mössbauer effect. Gordon and Breach, New York, pp 14–42

    Google Scholar 

  • Fey MV, Dixon JB (1981) Synthesis and properties of poorly crystalline and hydrated aluminous goethites. Clays Clay Min 29:91–100

    Google Scholar 

  • Fleisch J, Grimm R, Grubler J, Gutlich P (1980) Determination of the aluminium content of natural and synthetic aluminogoethites using Mössbauer spectroscopy. J Phys (Paris) Colloq C1 41:169–170

    Google Scholar 

  • Forsyth JB, Hedley JG, Johnson CE (1968) The magnetic structure and hyperfine field of goethite (α-FeOOH), J Phys C 1:179–188

    Google Scholar 

  • Fysh SA, Clark PE (1982) A Mössbauer study of the iron mineralogy of acid leached bauxite. Int J Miner Process (in press)

  • Golden DC, Bowen LH, Weed SV, Dixon JB (1979) Mössbauer studies of synthetic and soil-occurring aluminium-substituted goethites. Soil Sci Soc Am J 43:802–808

    Google Scholar 

  • Govaert A, Dauwe C, De Sitter J, De Grave E (1976) On the surface contribution to the line profile of small particles of goethite. J Phys (Paris) Colloq C6 37:291–292

    Google Scholar 

  • Greaves ED (1978) Mössbauer effect and nuclear resonance in lateritic minerals. PhD thesis, Department of Mineral Resources Engineering, Imperial College of Science and Technology, London

    Google Scholar 

  • Hesse J, Rubartsch A (1974) Model independent evaluation of overlapped Mössbauer spectra. J Phys E 7:526–532

    Google Scholar 

  • Janot C, Gilbert H (1970) Les constituants du fer dans certainers bauxites naturelles étudieés par effet Mössbauer. Bull Soc Fr Mineral Crystallogr 93:213–223

    Google Scholar 

  • Johnston JH, Norrish K (1981) A 57Fe Mössbauer spectroscopic study of a selection of Australian and other goethites. Aust J Soil Res 19:231–237

    Google Scholar 

  • Jónás K, Solymár K (1970) Preparation, X-ray, derivatographic and infrared study of aluminium-substituted goethites. Acta Chim Acad Sci Hung 66:383–394

    Google Scholar 

  • Jónás K, Solymár K, Zöldi J (1980) Some applications of Mössbauer spectroscopy to the quantitative analysis of minerals and mineral mixtures. J Mol Struct 60:449–452

    Google Scholar 

  • Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley and Sons, New York

    Google Scholar 

  • van der Kraan AM (1973) Mössbauer effect studies of surface ions of ultrafine α-Fe2O3 particles. Phys Status Solidi 18A:215–226

    Google Scholar 

  • Lewis DG, Schwertmann U (1979a) The influence of A1 on iron oxides. III. Preparation of Al goethites in M KOH. Clay Min 14:115–125

    Google Scholar 

  • Lewis DG, Schwertmann U (1979b) The influence of Al on iron oxides. IV. The influence of [Al], [OH], and temperature. Clays Clay Min 27:195–200

    Google Scholar 

  • Longworth G, Tite MS (1977) Mössbauer and magnetic susceptibility studies of iron oxides in soils from archaeological sites. Archaeometry 19:3–14

    Google Scholar 

  • Margulies S, Ehrmann JM (1961) Transmission and line broadening of resonance radiation incident on a resonance absorber. Nucl Instrum Methods 12:131–137

    Google Scholar 

  • Marshall SW, Wilenzick RM (1966) Effect of crystal size on Mössbauer recoil-free fraction in 197Au. Phys Rev Lett 16:219–221

    Google Scholar 

  • Meisel W (1973) Some analytical aspects of Mössbauer spectroscopy. In: Hucl M, Zencik T (eds) Proc 5th Int Conf on Mössbauer Spectroscopy, Bratislava. Nuclear Information Centre, Prague, pp 200–213

    Google Scholar 

  • Mendelovici E, Yariv SH, Villalba R (1979) Aluminium-bearing goethite in Venezuelan laterites. Clays Clay Min 27:368–372

    Google Scholar 

  • Mørup S, Topsøe H, Lipka J (1976) Modified theory for Mössbauer spectra of superparamagnetic particles: Application to Fe3O4. J Phys (Paris) Colloq C6 37:287–290

    Google Scholar 

  • Mørup S, Topsøe H (1976) Mössbauer studies of thermal excitations in magnetically ordered microcrystals. Appl Phys 11:63–66

    Google Scholar 

  • Mørup S (1981) Paramagnetic and superparamagnetic relaxation phenomena studied by Mössbauer spectroscopy. PhD thesis, Technical University of Denmark, Lyngby, Denmark

    Google Scholar 

  • Murad E (1979) Mössbauer spectra of goethite: evidence for structural imperfections. Min Mag 43:355–361

    Google Scholar 

  • Nalovic L, Janot C (1979) Mössbauer study of the crystallogenesis of iron hydroxides. Revue de Phys App 14:475–480

    Google Scholar 

  • Norrish K, Taylor RM (1961) The isomorphous replacement of iron by aluminium in soil goethites. J Soil Sci 12:294–306

    Google Scholar 

  • van Oosterhout GW (1965) Structure of goethite. In: Proc Int Conf Magnetism, Nottingham. Institute of Physics and Physical Society, London, pp 529–532 (Note: the editors of these proceedings are not named in the published version).

    Google Scholar 

  • Roth S, Horl EM (1967) Decrease of Mössbauer recoil-free fraction in small tungsten particles. Phys Lett 25A:299–300

    Google Scholar 

  • Thiel R (1963) Zum System α-FeOOH-α-AlOOH. Z Inorg Allg Chem 326:70–78

    Google Scholar 

  • Violet CE, Pipkorn DN (1971) Mössbauer line positions and hyperfine interactions in α-iron. J App Phys 42:4339–4342

    Google Scholar 

  • van Wieringen JS (1968) Note of Mössbauer fraction in powders of small particles. Phys Lett 26A:370–371

    Google Scholar 

  • Window B (1971) Hyperfine field distributions from Mössbauer spectra. J Phys E, 4:401–402

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fysh, S.A., Clark, P.E. Aluminous goethite: A mössbauer study. Phys Chem Minerals 8, 180–187 (1982). https://doi.org/10.1007/BF00308241

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00308241

Keywords

Navigation