Skip to main content
Log in

Transmission electron microscopy on meteoritic troilite

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Phase transitions and associated domains of meteoritic troilite (FeS) have been studied by means of transmission electron microscopy (TEM). Three polymorphs have been found, two of which can be described by superstructures of the NiAs-type structure (A, C subcell). The P \(\overline 6\) 2c (√3A, 2C) polymorph, stable at room temperature, displays antiphase domains with the displacement vector 1/3<\(\overline {\text{1}}\)10>. In situ heating experiments showed that the P \(\overline 6\) 2c polymorph changes at temperatures of 115°–150° C into an orthorhombic pseudohexagonal transitional phase with the probable space group Pmcn (A,√3A, C). It contains antiphase domains with the displacement vector 1/2 [110] and twins with a threefold twin-axis parallel c. When heated above 210° C the transitional phase transforms into the high-temperature modification with NiAs structure (P6 3/mmc). All observed phase transitions are reversible. The occurrence of antiphase and twin domains, respectively, agrees with the symmetry reductions involved in the subsolidus phase transitions. This is demonstrated by group-subgroup relationships among the space groups P6 3/mmc, Pmcn, and P \(\overline 6\) 2c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amelinckx S, Van Landuyt J (1976) Contrast effects at planar interfaces. In: Wenk HR (ed) Electron microscopy in mineralogy. Springer, Berlin Heidelberg New York, pp 68–112

    Google Scholar 

  • Andresen AF (1960) Magnetic phase transitions in stoichiometric FeS studied by means of neutron diffraction. Acta Chem Scand 14:919–929

    Google Scholar 

  • Andresen AF, Torbo P (1967) Phase transition in FexS (x=0.90–1.00) studied by neutron diffraction. Acta Chem Scand 21:2841–2848

    Google Scholar 

  • Ashworth JR (1977) Matrix textures in unequilibrated ordinary chondrites. Earth Planet Sci Lett 35:25–34

    Google Scholar 

  • Bach H (1964) Elektronenmikroskopische Durchstrahlungsaufnahmen und Feinbereichselektronenbeugung an Al2O3 Keramik. Bosch Tech Ber 1:10–13

    Google Scholar 

  • Barber DJ (1970) Thin foils of non-metals made for electron microscopy by sputter-etching. J Mat Sci 5:181

    Google Scholar 

  • Bärnighausen H (1975a) Group-subgroup relations as an ordering principle in crystal chemistry: The family tree in perovskite-like structures. Acta Crystallogr A 31 Suppl: S3

  • Bärnighausen H (1975b) Gruppe-Untergruppe-Beziehung zwischen Raumgruppen: Eine Anwendung auf Probleme der Kristallchemie. Written communication.

  • Bärnighausen H (1980) Group-subgroup relations between space groups: A useful tool in crystal chemistry. MATCH Commun Math Chem 9:139–175

    Google Scholar 

  • Bertaut EF (1956) Structure de FeS stochiométrique. Bull Soc Fr Mineral Christallogr 79:276–292

    Google Scholar 

  • Bertaut EF (1979) On sulfides and pnictides. Pure Appl Chem 52:73–92

    Google Scholar 

  • Evans HT (1970) Lunar troilite: Crystallography. Science 167:621–623

    Google Scholar 

  • Gard JA (1976) Interpretation of electron diffraction patterns. In: Wenk HR (ed) Electron microscopy in mineralogy. Springer, Berlin Heidelberg New York, pp 52–67

    Google Scholar 

  • Haraldsen H (1941a) Über die Eisen II — Sulfidmischkristalle. Z Anorg Chem 246:169–194

    Google Scholar 

  • Haraldsen H (1941b) Über die Hochtemperaturumwandlungen der Eisen II — Sulfidmischkristalle. Z Anorg Chem 246:195–226

    Google Scholar 

  • King HE, Prewitt CT (1978) FeS phase transitions at high pressures and temperatures. Phys Chem Minerals 3:72–73

    Google Scholar 

  • König R (1976) Quantitative X-ray microanalysis of thin foils. In: Wenk HR (ed) Electron microscopy in mineralogy. Springer, Berlin Heidelberg New York, pp 526–536

    Google Scholar 

  • Lorimer GW, Cliff G (1976) Analytical electron microscopy of minerals. In: Wenk HR (ed) Electron microscopy in mineralogy. Springer, Berlin Heidelberg New York, pp 506–519

    Google Scholar 

  • Morimoto N (1978a) Direct observation of the superstructure of nonstoichiometric compounds by high resolution electron microscopy. Mem Inst Sci Ind Res Osaka Univ 35:49–59

    Google Scholar 

  • Morimoto N (1978b) III. Incommensurate superstructures on transformation of minerals. Recent Prog Nat Sci 3:183–203

    Google Scholar 

  • Müller WF (1977) Phase transformation and associated domains in hexacelsian (BaAl2Si2O8). Phys Chem Minerals 1:71–83

    Google Scholar 

  • Nakazawa H, Morimoto N (1971) Phase relations and superstructures of pyrrhotite, Fe1−xS. Mater Res Bull 6:345–358

    Google Scholar 

  • Nakazawa H, Morimoto N, Watanabe E (1975) Direct observations of metal vacancies by high-resolution electron microscopy. I. 4C-type pyrrhotite (Fe7S8). Am Mineral 60:359–366

    Google Scholar 

  • Neubüser J, Wondratschek H (1969) Maximal subgroups of the space groups. Written communication

  • Pierce L, Buseck P (1974) Electron imaging of pyrrhotite superstructures. Science 186:1209–1212

    Google Scholar 

  • Putnis A (1974) Electron-optical observations on the α-transformation in troilite. Science 186:439–440

    Google Scholar 

  • Sparks JT, Mead W, Komoto T (1962) Neutron diffraction investigation of the magnetic and structural properties of near stoichiometric iron sulfide. J Phys Soc Japan 17 Suppl B-1:249–252

    Google Scholar 

  • Tighe N (1976) Experimental techniques. In: Wenk HR (ed) Electron microscopy in mineralogy. Springer, Berlin Heidelberg New York, pp 144–171

    Google Scholar 

  • Töpel J (1980) Transmissionselektronemikroskopische Untersuchungen an den chondritischen Meteoriten Chainpur, Mezö-Madaras und Tieschitz. Dissertation, Frankfurt/Main

    Google Scholar 

  • Töpel-Schadt J, Müller WF (1979) Transmission electron microscopy of the chondritic meteorites Chainpur, Mezö-Madaras and Tieschitz. Meteoritics 14:548–550

    Google Scholar 

  • Töpel-Schadt J, Müller WF, Pentinghaus H (1978) Transmission electron microscopy of SrAl2Si2O8: Feldspar and hexacelsian polymorphs. J Mater Sci 13:1809–1816

    Google Scholar 

  • Van Landuyt J, Amelinckx S (1972) Electron microscope observation of the defect structure of pyrrhotite. Mater Res Bull 7:71–80

    Google Scholar 

  • Van Tendeloo G, Amelinckx S (1974) Group-theoretical considerations concerning domain formation in ordered alloys. Acta Crystallogr A 30:431–440

    Google Scholar 

  • Wondratschek H, Jeitschko W (1976) Twin domains and antiphase domains. Acta Crystallogr A 32:664–666

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Töpel-Schadt, J., Müller, W.F. Transmission electron microscopy on meteoritic troilite. Phys Chem Minerals 8, 175–179 (1982). https://doi.org/10.1007/BF00308240

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00308240

Keywords

Navigation