Skip to main content
Log in

O, H, C isotope study of rocks from the KTB pilot hole: crustal profile and constraints on fluid evolution

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The pilot hole of the Continental Deep Borehole (KTB) drilling project is located in the Bavarian Oberpfalz at the western margin of the Bohemian Massif. The 4-km deep borehole penetrated various paragneisses and minor orthogneisses with intercalations of amphibolites and metagabbros. The different lithologies have systematically different whole-rock oxygen isotope values and give little evidence for large scale water-rock interaction. Minor fluid interaction is well documented during retrograde metamorphism by non-equilibrium fractionations between refractory minerals (quartz, garnet and hornblende) and altered minerals (chlorite/biolite and feldspar). Ubiquitous vein mineralisation indicates fluid-induced retrogression at temperatures between 150°C and 400°C. The δD values of hydroxylbearing minerals are very uniform in all lithologic units. The calculated hydrogen isotope composition of the fluid in equilibrium with matrix and vein minerals increases from -45‰ for metabasic rocks, to -20‰ for gneisses, to about -5‰ for vein minerals. The oxygen isotope composition of the fluid has been buffered by the rock and decreases with decreasing temperature because of increasing fractionations at low temperatures and low water-rock ratios. Modern fluids sampled from open cavities within the borehole have isotopic compositions that suggest a continuous fluid evolution during retrogression in a closed system. The δ13C values of calcite and graphite also indicate closed system mixing processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borchardt R, Zulauf G, Emmermann R, Hoefs J, Simon K (1990) Abfolge und Bildungsbedinggungen von Sekundärmineralen in der KTB-Vorbohrung. In: Emmermann R, Giese P (eds) KTB Report 90-4, NLfB. Hannover, pp 76–88

    Google Scholar 

  • Bottinga Y (1969) Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-CO2-graphite-methane-hydrogen and water vapor. Geochim Cosmochim Acta. 33:49–64

    Google Scholar 

  • Bottinga Y, Javoy M (1973) Comments on oxygen isotope geothermometry. Earth Planet Sci Lett 20:250–265

    Google Scholar 

  • Chacko T, Mayeda TK, Clayton RN, Goldsmith JR (1991) Oxygen and carbon isotope fractionations between CO2 and calcite. Geochim Cosmochim Acta 55:2867–2882

    Google Scholar 

  • Chiba H, Kusakabe M, Hirano S, Matsuo S, Somiya S (1981) Oxygen isotope fractination factors between anhydrite and water from 100°C and 550°C. Earth Planet Sci Lett 53:55–62

    Google Scholar 

  • Cole DR, Ohmoto H (1986) Kinetics of isotope exchange at elevated temperatures and pressures. In: Valley JW, Taylor HP, O'Neil JR (eds) Stable isotopes in high temperature geological processes. (Reviews in Mineralogy 16) Mineral Soc Am Washington DC, pp 41–90

    Google Scholar 

  • Cole DR, Ohmoto H, Jacobs GK (1992) Isotopic exchange in mineral-fluid systems: III, rates and mechanism of oxygen isotope exchange in the system granite-H2O±NaCl±KCl at hydrothermal conditions. Geochim Cosmochim Acta 56:445–466

    Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric, waters. Science 133:1702–1703

    Google Scholar 

  • Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol 40:259–274

    Google Scholar 

  • Fortier SM, Giletti BJ (1991) Volume self-diffusion of oxygen in biotite, muscovite, and phlogopite micas. Geochim Cosmochim Acta 55:1319–1330

    Google Scholar 

  • Frape SK, Fritz P (1982) The chemistry and isotopic composition of saline groundwaters from the Canadian Shield. Geochim Cosmochim Acta 48:1617–1627

    Google Scholar 

  • Frape SK, Fritz P (1987) Geochemical trends from groundwaters from the Canadian Shield. In: Fritz P, Frape SK (eds) Saline water and gases in crystalline rocks. Geol Assoc Can Spec Pap 33: 19–38

  • Friedrich G, Vogtmann-Becker J, Kotnik M, Redecke P, Herzig P, Kontny A, van Delden S, Keyssner S (1989) Bildungsbe-dingungen von Chlorit in metamorphen Gesteinen der Oberpfalz. In: Emmermann R, Giese P (eds) KTB Report 89-3, NLfB, Hannover, p 439

    Google Scholar 

  • Fritz P, Frape SK (1982) Saline groundwaters in the Canadian shield—a first overview. Chem Geol 36:179–190

    Google Scholar 

  • Fritz P, Lodemann M (1990) Die salinaren Tiefenwässer der KTB-Vorbohrung. Die Geowissenschaften 9:281–285

    Google Scholar 

  • Frost BR (1979) Mineral equilibria involving mixed volatiles in a C-O-H fluid phase: the stabilities of graphite and siderite. Am J Sci 279:1033–1059

    Google Scholar 

  • Gascoyne M, Davison CC, Ross JD, Pearson R (1987) Saline groundwaters and brines in plutons in the Canadian Shield. In: Fritz P, Frape SK (eds) Saline water and gases in crystalline rocks. Geol Assoc Can Spec Pap 33:53–68

  • Giletti BJ (1986) Diffusion effects on oxygen isotope temperatures of slowly cooled igneous and metamorphic rocks. Earth Planet Sci Lett 77:218–228

    Google Scholar 

  • Giletti BJ, Anderson TF (1975) Studies in diffusion—II: oxygen in phlogopite mica. Earth Planet Sci Lett 28:225–233

    Google Scholar 

  • Giletti BJ, Yund RA (1984) Oxygen diffusion in quartz. J Geophys Res 89:4039–4046

    Google Scholar 

  • Giletti BJ, Semet MP, Yund RA (1978) Studies in diffusion—III: oxygen in feldspars: an ion microprobe determination. Geochim Cosmochim Acta 42:45–57

    Google Scholar 

  • Graham CM (1983) Experimental hydrogen isotope studies, III: diffusion of hydrogen in hydrous minerals, and stable isotope exchange in metamorphic rocks. Contrib Mineral Petrol 76:216–228

    Google Scholar 

  • Graham CM, Sheppard SMF (1980) Experimental hydrogen isotope study II: fractionation in the system epidote-NaCl-H2O, epidote-CaCl2-H2O and epidote-seawater, and the hydrogen isotope composition of natural epidotes. Earth Planet Sci Lett 49:237–251

    Google Scholar 

  • Graham CM, Harmon RS, Sheppard SMF (1984) Experimental hydrogen isotope studies: hydrogen isotope exchange between amphibole and water. Am Mineral 69:128–138

    Google Scholar 

  • Graham CM, Viglano JA, Harmon RS (1987) An experimental study of hydrogen isotope exchange between aluminous chlorite and water, and of hydrogen diffusion in chlorite. Am Mineral 72:566–579

    Google Scholar 

  • Grimmeisen W, Hoernes S (1990) Syn-and postmetamorphe Fluid-Gesteins-Wechselwirkungen. In: Emmermann R, Giese P (eds) KTB Report 90-4, NLfB, Hannover, p 581

    Google Scholar 

  • Guha J, Kanwar R (1987) Vug brines—fluid inclusions: a key to the understanding of secondary gold enrichment processes and the evolution of deep brines in the Canadian Shield. In: Fritz P, Frape SK (eds) Saline water and gases in crystalline rocks. Geol Assoc Can Spec Pap 33:95–102

  • Hoefs J (1987) Stable isotope geochemistry, 3rd. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Jenkin GRT, Fallick AE, Leake BE (1992) A stable isotope study of retrograde alteration in SW Connemara, Ireland. Contrib Mineral Petrol 110:269–288

    Google Scholar 

  • Jöreskog KG, Klovan JE, Reyment RA (1976) Geological factor analysis: methods in geomathematics 1. Elsevier Scientific Publishing Company, Amsterdam

    Google Scholar 

  • Kamineni DC (1987) Halogen-bearing minerals in plutonic rocks: a possible source of chlorine in saline groundwater in the Canadian Shield. In: Fritz P, Frape SK (eds) Saline water and gases in crystalline rocks. Geol Assoc Can Spec Pap 33:69–79

  • Karlsson HR, Clayton RN (1990) Oxygen isotope fractionation between analcime and water: an experimental study. Geochim Cosmochim Acta 54:1359–1368

    Google Scholar 

  • Kelly WC, Rye RO, Livnat A (1986) Saline minewaters of the Keweenaw Peninsula, northern Michigan; their nature, origin and relation to similar deep waters in Precambrian crystalline rocks of the Canadian Shield. Am J Sci 286:281–308

    Google Scholar 

  • Ligang Z, Jingxiu L, Huanbo Z, Zhensheng C (1989) Oxygen isotope fractionation in the quartz-water-salt system. Econ Geol 84:1643–1650

    Google Scholar 

  • Nordstrom DK, Olsson T (1987) Fluid inclusions as a source of dissolved salts in deep granitic groundwaters. In: Fritz P, Frape SK (eds) Saline water and gases in crystalline rocks. Geol Assoc Can Spec Pap 33:111–119

  • O'Brien PJ (1991) High pressure metamorphism in the NW Bohemian Massif: comparisons and contrasts between the Moldanubian, Münchberg Massif, ZEV, ZTT and Erzgebirge. In: Emmermann R, Lauterjung J (eds) KTB Report 91-1, NLfB, Hannover, pp 1–12

    Google Scholar 

  • O'Brien PJ, Röhr C, Okrusch M, Patzak M (1992) Eclogite facies relics and a multistage breakdown in metabasites of the KTB pilot hole, NE Bavaria: implications for the Variscan tectonometamorphic evolution of the NW Bohemian Massif. Contrib Mineral Petrol 112:261–278

    Google Scholar 

  • O'Neil JR, Taylor HP (1967) The oxygen isotope and cation exchange chemistry of feldspars. Am Mineral 52:1414–1437

    Google Scholar 

  • O'Neil JR, Truesdell AH (1991) Oxygen isotope fractionation studies of solute-water interactions. In: Taylor HP, O'Neil JR, Kaplan IR (eds) Stable isotope geochemistry: a tribute to Samuel Epstein. Geochem Soc Spec Publ 3, pp 17–25

  • O'Neil JR, Clayton RN, Maycda TK (1969) Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys 51:5547–5558

    Google Scholar 

  • Patzak M, Okrusch M, Röhr Ch (1991) Die Metabasite der KTB-Vorbohrung: Petrographie, Geochemie, Mineralchemie und Metamorphoseentwicklung. In: Emmermann R, Lauterjung J (eds) KTB Report 91-1. NLfB, Hannover, pp 63–81

    Google Scholar 

  • Reinhardt J, Kleeman U, Blümel P, Schreyer W (1989) Geothermobarometry of metapelites as a key to the pressure and temperature history of the ZEV, NE Bavaria. In: Emmermann R, Giese P (eds) KTB Report 89-3, NLfB, Hannover, pp 24–32

    Google Scholar 

  • Reutel C (1992) Krustenfluide in Gesteinen und Lagerstätten am Westrand der Böhmischen Masse. Göttinger Arb Geol Paläontol 53

  • Reutel C, Skrotzki W, Vollbrecht A (1989) TEM and RMP studies of graphites of the pilot borebole and the associated field. In: Emmermann R, Giese P (eds) KTB Report 89-3, NLfB, Hannover, p 445

    Google Scholar 

  • Richet P, Bottinga Y, Javoy M (1977) A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine stable isotope fractionation among gaseous molecules. Annu Rev Earth Planet Sci 5:65–110

    Google Scholar 

  • Richter R, Hoernes S (1988) The application of the increment method in comparison with experimentally derived and calculated O-isotope fractionations. Chem Erde 48:1–18

    Google Scholar 

  • Scheele N, Hoefs J (1992) Carbon isotope fractionation between calcite, graphite and CO2: an experimental study. Contrib Mineral Petrol 112:35–45

    Google Scholar 

  • Weber K, Vollbrecht A (1989) The crustal structure at the KTB drilling site, Oberpfalz. In: Emmermann R, Wohlenberg J (eds) The German continental deep drilling program (KTB)—exploration of the deep continental crust. Springer, Berlin Heidelberg New York, pp 5–36

    Google Scholar 

  • Wimmenaueu W (1991) Geochemie der metamorphen Sedimentgesteine in der Kontinentalen Tiefbohrung und ihrem Umfeld. In: Emmermann R, Lauterjung J (eds) KTB Report 91-1, NLfB, Hannover, pp 106–135

    Google Scholar 

  • Zulauf G (1991) Zur spät-bis postvariszischen Krustenentwicklung in der nördlichen Oberpfalz. In: Emmermann R, Lauterjung J (eds) KTB Report 91-1, NLfB, Hannover, pp 41–62

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, K., Hoefs, J. O, H, C isotope study of rocks from the KTB pilot hole: crustal profile and constraints on fluid evolution. Contr. Mineral. and Petrol. 114, 42–52 (1993). https://doi.org/10.1007/BF00307864

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00307864

Keywords

Navigation