Skip to main content
Log in

Structural analysis of the mitotic cycle in pre-gastrula Xenopus embryos

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The long-known phenomenon of karyomere (chromosome vesicle) formation at early telophase of the nuclear cycle during early embryogenesis of a wide range of organisms including amphibians (Rubaschkin 1905; for review, see Richards 1917) was investigated in the early cleavage cycles of Xenopus laevis embryos before the mid blastula transition. Embryos were fixed and Epon embedded at successive time intervals and consecutive thick (3 μm) and ultrathin sections cut. Using conventional light microscopy at low magnification as well as phase and/or interference contrast video microscopy at high magnification, a substantial amount of information could be obtained from the analysis of optical sections in thick-sectioned material. In addition, details of the ultrastructural organization could be analysed from corresponding ultrathin sections by electron microscopy. The light microscopic analysis of serial thick sections allowed precise determination of the arrangement and sizes of telophase karyomere structures during the embryonic nuclear division cycle. It was found that small, widely spaced 1st order karyomeres fuse to larger (2nd order) karyomeres which then progressively exhibit lateral fusion of neighbouring karyomeres. The final coalescence of adjacent karyomeres marks the onset of the reorganization of the typical interphase nuclear structure. The data are discussed with regard to the occurrence of karyomeres during the embryonic nuclear cycle of arthropods, dipteran insects, and echinoderms as well as recent progress in the use of Xenopus egg extracts for in vitro assembly of nuclear structures around protein-free DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen RD (1985) New observations on cell architecture and dynamics by video-enhanced contrast optical microscopy. Annu Rev Biophys Chem 14:265–290

    Google Scholar 

  • Allen RD, Allen NS (1983) Video-enhanced microscopy with a computer frame memory. J Microsc 129:3–17

    Google Scholar 

  • Bernhard W (1969) Ultrastructure of the cancer cell. In: Lima-DeFaria A (ed) Handbook of molecular cytology. North-Holland Publishing Company, Amsterdam, London, pp 667–715

    Google Scholar 

  • Billet FS, Wild AE (1975) Practical studies of animal development. Chapman and Hall, London

    Google Scholar 

  • Blow JJ, Laskey RA (1986) Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs. Cell 47:577–587

    Google Scholar 

  • Brachet J (1985) Molecular cytology, vol 2. Cell interactions. Academic Press, Inc., Orlando, NY

    Google Scholar 

  • Callan HG, Gall JG, Berg CA (1987) The lampbrush chromosomes of Xenopus laevis: Preparation, identification, and distribution of 5S DNA sequences. Chromosoma 95:236–250

    Google Scholar 

  • Dan K, Tanaka S, Yamazaki K, Kato Y (1980) Cell cycle study up to the time of hatching in the embryos of the sea urchin Hemicentrotus pulcherrimus. Dev Growth Differ 22:589–598

    Google Scholar 

  • Davidson EH (1986) Gene activity in early development, 3rd edn. Academic Press, Inc., Orlando, NY

    Google Scholar 

  • Dawid IB, Haynes SR, Jamrich M, Jonas E, Miyatani S, Sargent TD, Winkles JA (1986) Gene expression in Xenopus embryogenesis. J Embryol Exp Morphol 89:113–124

    Google Scholar 

  • Dreyer C, Stick R, Hausen P (1986) Uptake of oocyte nuclear proteins by nuclei of Xenopus embryos. In: Peters R, Trendelenburg MF (eds) Nucleocytoplasmic transport. Springer, Berlin Heidelberg New York Tokyo, pp 143–157

    Google Scholar 

  • Emanuelson H (1973) Karyomeres in early cleavage embryos of Ophryotrocha labronica LaGreca and Bacci. Wilhelm Roux Arch 173:27–45

    Google Scholar 

  • Fisher PA (1987) Disassembly and reassembly of nuclei in cell-free systems. Cell 48:175–176

    Google Scholar 

  • Foe VE, Alberts BM (1985) Reversible chromosome condensation induced in Drosophila embryos by anoxia: visualization of interphase nuclear organization. J Cell Biol 100:1623–1636

    Google Scholar 

  • Franke WW, Scheer U, Krohne G, Jarasch ED (1981) The nuclear envelope and the architecture of the nuclear periphery. J Cell Biol 91:39s-50s

    Google Scholar 

  • Fux T (1974) Chromosome elimination in Heteropeza pygmaea. II. Ultrastructure of the spindle apparatus. Chromosoma 49:99–112

    Google Scholar 

  • Gurdon JB, Wakefield L (1986) Microinjection of amphibian oocytes and eggs for the analysis of transcription. In: Celis JE, Graessmann A, Loyter A (eds) Microinjection and organelle transplantation techniques. Academic Press, Inc., London, pp 269–299

    Google Scholar 

  • Hausen P, Wang YH, Dreyer C, Stick R (1985) Distribution of nuclear proteins during maturation of the Xenpous oocyte. J Embryol Exp Morphol 89 Suppl:17–34

    Google Scholar 

  • Hofmann A, Laier A, Trendelenburg MF (1985) Geninjektion und Transkript-Analyse in der Xenopus-Oocyte. In: Blin N, Trendelenburg MF, Schmidt RE (eds) Molekular- und Zellbiologie. Aktuelle Themen. Springer, Berlin Heidelberg New York, pp 144–158

    Google Scholar 

  • Inoué S (1987) Video microscopy, 2nd print. Plenum Press, New York, London

    Google Scholar 

  • Ito S, Dan K, Goodenough D (1981) Ultrastructure and H3-thymidine incorporation by chromosome vesicles in sea urchin embryos. Chromosoma 83:441–453

    Google Scholar 

  • Kalt MR, Tandler B (1971) A study of fixation of early amphibian embryos for electron microscopy. J Ultrastruct Res 36:633–645

    Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron-microscopy. J Cell Biol 27:137

    Google Scholar 

  • Krohne G, Benavente R (1986) A pool of soluble nuclear lamins in eggs and embryos of Xenopus laevis. In: Peters R, Trendelenburg MF (eds) Nucleocytoplasmic transport. Springer, Berlin Heidelberg New York Tokyo, pp 135–142

    Google Scholar 

  • Laskey RA, Gurdon JB, Trendelenburg MF (1979) Accumulation of materials involved in rapid chromosomal replication in early amphibian development. In: Newth DR, Balls M (eds) Maternal effects in development. Cambridge University Press, Cambridge, UK, pp 65–80

    Google Scholar 

  • Longo FJ (1972) An ultrastructural analysis of mitosis and cytokinesis in the sea urchin Arbacia punctulata. J Morphol 138:207–238

    Google Scholar 

  • Maul GG (1977) Nuclear pore complexes. Elimination and reconstitution during mitosis. J Cell Biol 74:492–500

    Google Scholar 

  • Newmeyer DD, Finlay DR, Forbes D (1986a) In vitro transport of a fluorescent nuclear protein and exclusion of non-nuclear proteins. J Cell Biol 103:2091–2102

    Google Scholar 

  • Newmeyer DD, Lucocq JM, Bürglin TR, DeRobertis EM (1986b) Assembly in vitro of nuclei active in nuclear protein transport: ATP is required for nucleoplasmin accumulation. EMBO J 5:501–510

    Google Scholar 

  • Newport J (1987) Nuclear reconstitution in vitro: stages of assembly around proteinfree DNA. Cell 48:205–217

    Google Scholar 

  • Newport J, Forbes D (1985) Fate of DNA injected into Xenopus eggs and in egg extracts: assembly into nuclei. In: Costantini F, Jaenisch R (eds) Genetic manipulation of the early mammalian embryo. Banbury Report 20. Cold Spring Harbor Laboratory, pp 243–250

  • Newport J, Kirschner M (1982) A major developmental transition in early Xenopus embryos. I. Characterization and timing of cellular changes at the midblastula stage. Cell 30:675–686

    Google Scholar 

  • Niewkoop PD, Faber J (1967) Normal table of Xenopus laevis (Daudin). North Holland Publ. Comp., Amsterdam London

    Google Scholar 

  • Richards A (1917) The history of the chromosomal vesicles in Fundulus and the theory of genetic continuity of chromosomes. Biol Bull 32:249–290

    Google Scholar 

  • Rubaschkin W (1905) Über doppelte und polymorphe Kerne in Triton-Blastomeren. Arch Mikrosk Anat Entwicklungsmech 66:485–500

    Google Scholar 

  • Signoret J (1980) Evidence of the first genetic activity required in Axolotl development. In: McKinnell RG, DiBerardino MA, Blumenfeld M, Bergad RD (eds) Differentiation and neoplasia. Springer, Berlin Heidelberg New York, pp 71–74

    Google Scholar 

  • Signoret J, Lefresne J (1974) Détermination par incorporation de thymidine tritiée des phases du cycle cellulaire chez le germe d'Axolotl en période synchrone de segmentation. C R Seances Acad Sci Paris 279:1189–1191

    Google Scholar 

  • Stafstrom JP, Staehelin LA (1984) Dynamics of the nuclear envelope and of nuclear pore complexes during mitosis in the Drosophila embryo. Eur J Cell Biol 34:179–189

    Google Scholar 

  • Trendelenburg MF, Oudet P, Spring H, Montag M (1986a) DNA injections into Xenopus embryos: fate of injected DNA in relation to formation of embryonic nuclei. J Embryol Exp Morphol 97 Suppl:243–255

    Google Scholar 

  • Trendelenburg MF, Allen RD, Gundlach H, Meissner B, Tröster H, Spring H (1986b) Recent improvements in microscopy towards analysis of transcriptionally active genes and translocation of RNP-complexes. In: Peters R, Trendelenburg MF (eds) Nucleocytoplasmic transport. Springer, Berlin Heidelberg New York Tokyo, pp 95–112

    Google Scholar 

  • Tröster H, Spring H, Meissner B, Schultz P, Oudet P, Trendelenburg MF (1985) Structural organization of an active, chromosomal nuclear organizer region (NOR) identified by light microscopy and subsequent TEM and STEM electron microscopy. Chromosoma 91:151–163

    Google Scholar 

  • Tymowska J, Kobel HR (1972) Karyotype analysis of Xenopus muelleri (Peters) and Xenopus laevis (Daudin), Pipidae. Cytogenetics 11:270–278

    Google Scholar 

  • Welter DA, Black DA, Hodge LD (1985) Nuclear reformation following metaphase in Hela S3 cells: three-dimensional visualization of chromatid rearrangements. Chromosoma 93:57–68

    Google Scholar 

  • Zalokar M, Erk I (1976) Division and migration of nuclei during early embryogenesis of Drosophila melanogaster. J Microsc Biol Cell 25:97–106

    Google Scholar 

  • Zatsepina OV, Polyakov VY, Chentsov YS (1982) Nuclear envelope formation around metaphase chromosomes: chromosome condensation and nuclear envelope reconstitution during mitosis. Eur J Cell Biol 26:277–283

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montag, M., Spring, H. & Trendelenburg, M.F. Structural analysis of the mitotic cycle in pre-gastrula Xenopus embryos. Chromosoma 96, 187–196 (1988). https://doi.org/10.1007/BF00302357

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00302357

Keywords

Navigation