Skip to main content
Log in

Etude des relations fonctionnelles entre le muscle fléchisseur accessoire et les organes sensoriels chordotonaux et myochordotonaux des appendices locomoteurs de la langouste Palinurus vulgaris

Study of the functional relation between the accessory flexor muscle and the sensory organs of locomotor appendages in the rock-lobster Palinurus vulgaris

  • Published:
Zeitschrift für vergleichende Physiologie Aims and scope Submit manuscript

Summary

  1. 1.

    The comparative activity of the myochordotonal organ MCO1 and of the chordotonal MC1 of the rock-lobster Palinurus vulgaris are studied with different types of stimulation.

  2. 2.

    Calibrated stretching of the flexor muscles shows the variety of MCO1, proprioceptive discharge (Figs. 4–6).

  3. 3.

    The contraction of the main flexor muscle and of the extensor significantly modifies MCO1 and MC1 (Fig. 7).

  4. 4.

    The contraction of the accessory flexor muscle (AFM) evokes an opposite response in MC1 and MCO1. This difference could be explained by the character of the forces exerted on the proprioceptors (Figs. 9 and 10).

    a)Stimulation of the distal head of the AFM alone give a small flexion of the M-C joint. MC1, chordotonal organ associated with it, is much more sensitive to movement of the joint than to modification of the muscular tension (Fig. 12).

    b)The proximal head of the AFM, excites MCO1 activity without movement of the M-C joint.

  5. 5.

    The above results on the rock-lobster are discussed in relation to previous work on the crab. New terms that are more descriptive of each receptor's function than the old terms are proposed for the different parts of the AFM.

Résumé

  1. 1.

    L'activité comparée de l'organe myochordotonal MCO1 et du récepteur chordotonal MC1 de la langouste Palinurus vulgaris a été étudiée au cours de stimulations diverses.

  2. 2.

    Des étirements bien définis, appliqués directement aux muscles fléchisseurs, ont permis de souligner la variété et la richesse de la décharge proprioceptive de MCO1 (fig. 4–6).

  3. 3.

    La contraction du muscle fléchisseur principal et de l'extenseur mettent en jeu des cellules sensorielles différentes de MCO1 et MC1 (fig. 7).

  4. 4.

    La contraction du MFA peut provoquer l'apparition d'informations de nature opposée de MCO1 et MC1, cette particularité semble s'expliquer par l'orientation des forces exercées sur les propriocepteurs (fig. 9 et 10). a)La stimulation sélective du faisceau musculaire distal du MFA provoque une légère flexion de l'articulation M-C; l'organe chordotonal MC1, associé à lui, est beaucoup plus sensible à ces mouvements articulaires qu'à des variations de tension musculaire (fig. 12). b)Le faisceau musculaire proximal du MFA module l'activité proprioceptive de MCO1 sans provoquer de mouvement de M-C.

  5. 5.

    Les différences fonctionnelles observées sur la langouste sont discutées en les comparant aux travaux des précédent auteurs. Une nouvelle dénomination des deux parties du MFA est suggérée.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliographie

  • Alexandrowicz, J. S.: Muscle receptor organs in the abdomen of Homarus vulgaris and Palinurus vulgaris. Quart. J. micr. Sci. 92, 163–199 (1951).

    Google Scholar 

  • —: Receptor elements in the thoracic muscles of Homarus vulgaris and Palinurus vulgaris. Quart. J. micr. Sci. 93, 315–346 (1952).

    Google Scholar 

  • Atwood, H. L., Dorai Raj, B. S.: Tension development and membrane responses in phasic and tonic muscle fiber of a crab. J. cell. comp. Physiol. 64, 55–72 (1964).

    Google Scholar 

  • Barth, G.: Untersuchungen über myochordotonale Organe bei dekapoden Crustaceen. Z. wiss. Zool. 145, 576–624 (1934).

    Google Scholar 

  • Boettiger, E. G., Hartman, H. B.: Excitation of the receptor cells of the Crustacean PD organ. Symposium on Neurobiology of Invertebrates, p. 381–390 (1968).

  • Burke, W.: An organ of proprioception and vibration sense in Carcinus maenas (L.). J. exp. Biol. 31, 89–105 (1954).

    Google Scholar 

  • Bush, B. M. H.: Proprioception by chordotonal organs in the merocarpopodite and carpopropodite joints of Carcinus maenas legs. Comp. Biochem. Physiol. 14, 185–199 (1965a).

    Google Scholar 

  • —: Proprioception by the coxo-basal chordotonal organ, CB in legs of the crabs Carcinus maenas. J. exp. Biol. 42, 285–297 (1965b).

    Google Scholar 

  • —: Leg reflexes from chordotonal organs in the crab Carcinus maenas. Comp. Biochem. Physiol. 15, 567–587 (1965c).

    Google Scholar 

  • Clarac, F.: Proprioceptor anatomy of the ischio-meropodite region in legs of the crab Carcinus mediterraneus C. Z. vergl. Physiol. 61, 203–223 (1968a).

    Google Scholar 

  • —: Proprioception by the ischio-meropodite region in legs of the crab Carcinus mediterraneus C. Z. vergl. Physiol. 61, 224–245 (1968b).

    Google Scholar 

  • Clarac, F.: Fonctions proprioceptives au niveau de la région basi-ischio-méropodite chez Astacus leptodactylus. Z. vergl. Physiol. 68, 1–24 (1970).

    Google Scholar 

  • —, Masson, C.: Anatomie comparée des propriocepteurs de la région basi-ischioméropodite chez certains crustacés décapodes. Z. vergl. Physiol. 65, 242–273 (1969).

    Google Scholar 

  • —, Vedel, J. P.: Étude fonctionnelle de deux propriocepteurs appendiculaires chez la langouste Palinurus vulgaris. J. Physiol. (Paris) 62, 360 (1970).

    Google Scholar 

  • Cohen, M. J. V.: A proprioceptive system in the legs of the crab Cancer magister. Anat. Rec. 137, 346 (1960).

    Google Scholar 

  • —: The crustacean myochordotonal organ as a proprioceptive system. Comp. Biochem. Physiol. 8, 223–243 (1963a).

    Google Scholar 

  • —: Muscle fibres and afferent nerves in a crustacean receptor muscles. Quart. J. micr. Sci. 104, pt 4, 555–559 (1963b).

    Google Scholar 

  • —: The dual role of sensory system: detection and setting control excitability. Cold Spr. Harb. Symp. quant. Biol. 30, 587–599 (1965).

    Google Scholar 

  • Dorai Raj, B. S.: Diversity of crab muscle fibers innervated by a single motor axon. J. cell. comp. Physiol. 64, 41–54 (1964).

    Google Scholar 

  • Evoy, W. H., Cohen, M. J. V.: Sensory and motor interaction in the locomotor reflexes of crabs. J. exp. Biol. 51, 151–169 (1969).

    Google Scholar 

  • Fields, H. L.: Proprioceptor control of posture in the crayfish abdomen. J. exp. Biol. 44, 455–468 (1966).

    Google Scholar 

  • —, Evoy, W. H., Kennedy, D.: Reflex role played by efferent control of an invertebrate stretch receptor. J. Neurophysiol. 30, 859–874 (1967).

    Google Scholar 

  • Hartman, H. B., Boettiger, E. G.: The functional organization of the propus dactylus organ in Cancer irroratus. Comp. Biochem. Physiol. 22, 651–663 (1967).

    Google Scholar 

  • Hoyle, G., Wiersma, C. A. G.: Excitation at neuromuscular junctions in Crustacea. J. Physiol. (Lond.) 143, 403–428 (1958a).

    Google Scholar 

  • —: Inhibition at neuromuscular junctions in Crustacea. J. Physiol. (Lond.) 143, 426–440 (1958b).

    Google Scholar 

  • —: Coupling of membrane potential to contraction in crustacean muscles. J. Physiol. (Lond.) 143, 441–453 (1958c).

    Google Scholar 

  • Hwang, J. C. L.: The function of a second sensory cell group in the accessory flexor proprioceptive system of crab limbs. Amer. Zool. 1, 453 (1961).

    Google Scholar 

  • Mendelson, M.: Some factors in the activation of crab movement receptors. J. exp. Biol. 40, 157–169 (1963).

    Google Scholar 

  • —: The site of impulse initiation in bipolar receptor neurons of Callinectes sapidus L. J. exp. Biol. 45, 411–420 (1966).

    Google Scholar 

  • Wiersma, C. A. G.: Movement receptors in decapod crustacea. J. mar. biol. Ass. U.K. 38, 143–152 (1959).

    Google Scholar 

  • —, Furshpan, E., Florey, E.: Physiological and pharmacological observations on muscle receptor organs of the crayfish Cambarus clarkii. J. exp. Biol. 30, 136–150 (1953).

    Google Scholar 

  • —, Ripley, H.: Innervation patterns of crustacean limbs. Physiol. comp. (s-Graw) 2, 391–405 (1952).

    Google Scholar 

  • —, van der Mark, F., Fiore, L.: On the firing patterns of the “movement” receptors of the elastic organs of the crab, Carcinus. Comp. Biochem. Physiol. 34, 833–840 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarac, F., Vedel, J.P. Etude des relations fonctionnelles entre le muscle fléchisseur accessoire et les organes sensoriels chordotonaux et myochordotonaux des appendices locomoteurs de la langouste Palinurus vulgaris . Z. vergl. Physiologie 72, 386–410 (1971). https://doi.org/10.1007/BF00300711

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00300711

Navigation