Skip to main content
Log in

Menaquinone is an obligatory component of the chain catalyzing succinate respiration in Bacillus subtilis

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The question was investigated as to whether the bacterial menaquinone (MK) is a component of the electron transport chain catalyzing succinate respiration in Bacillus subtilis. Three different methods were applied, and the following consistent results were obtained. (i) Solvent extraction of MK from the bacterial membrane caused total inhibition of the respiratory activities with succinate and NADH, while the activity of succinate dehydrogenase remained unaffected. The respiratory activities were restored onincorporation of vitamin K1 into the membrane preparation. (ii) The membrane fraction of a B. subtilis mutant containing 15% of the wild-type amount of MK, respired succinate and NADH at reduced activities. Wild-type activities were restored on fusion of the preparation to liposomes containing vitamin K1. (iii) The membrane fraction of B. subtilis catalyzed succinate oxidation by various water-soluble naphtho- or benzoquinones at specific activities exceeding to that of succinate respiration. The results suggest that MK is involved in succinate respiration, although its redox potential is unfavorable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MK:

menaquinone

MKH2 :

reduced menaquinone

E0':

standard redox potential at pH 7

PMS:

phenazine methosulfate

DCPIP:

2,6-Dichlorophenol-indophenol

Q:

ubiquinone

Q0 :

2,3-dimethoxy-5-methyl-1,4-bezoquinone

DMN, 2,3:

dimethyl-1,4-naphthoquinone

DMK:

demethylmenaquinone

References

  • Clark WM (1960) Oxidation reduction potentials of organic systems. Williams & Wilkins, Baltimore

    Google Scholar 

  • Bergsma J, Meihuizen KE, van Oeveren W, Konings WN (1982) Restoration of NADH oxidation with menaquinones and menaquinone analogues in membrane vesicles from the menaquinone-deficient Bacillus subtilis aro D. Eur J Biochem 125:651–657

    Google Scholar 

  • Bode CH, Goebell H, Stähler E (1968) Zur Eliminierung von Trübungsfehlern bei der Eiweißbestimmung mit der Biuretmethode. Z Klin Chem Klin Biochem 6:418–422

    Google Scholar 

  • Borriss R, Süss KH, Süss M, Manteuffel R, Hofemeister J (1986) Mapping and properties of bgl (β-Glucanase) mutants of Bacillus subtilis. J Gen Microbiol 132:431–442

    Google Scholar 

  • Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354

    Google Scholar 

  • Driessen AJM, de Vrij W, Konings WN (1986) Functional incorporation of beef-heart cytochrome c oxidase into membranes of Streptococcus cremoris. Eur J Biochem 154:617–624

    Google Scholar 

  • Graf M, Bokrau ZM, Böcher R, Friedl P, Kröger A (1985) Electron transport driven phosphorylation catalyzed by proteoliposomes containing hydrogenase, fumarate reductase and ATP synthase. FEBS Lett 184:100–103

    Google Scholar 

  • Hoch JA, Nester EW (1983) Gene-Enzyme relationships of aromatic acid biosynthesis in Bacillus subtilis. J Bacteriol 116:59–66

    Google Scholar 

  • Holländer R (1976) Correlation of the function of demethyl-menaquinone in bacterial electron transport with its redox potential. FEBS Lett 72:98–100

    Google Scholar 

  • Kita K, Vibat CRT, Menhardt S, Guest JR, Gennis RB (1989) Onestep purification from Escherichia coli of complex II (succinate: ubiquinone oxidoreductase) associated with succinate-reducible cytochrome b556. J Biol Chem 264:2672–2677

    Google Scholar 

  • Kröger A (1978) Determination of contents and redox states of ubiquinone and menaquinone. Methods Enzymol 53D:579–591

    Google Scholar 

  • Kröger A, Dadak V (1969a) On the role of quinones in bacterial electron transport. The respiratory system of Bacillus megaterium. Eur J Biochem 11:328–340

    Google Scholar 

  • Kröger A, Dadak V (1969b) The function of menaquinone in the electron transport of Bacillus megaterium. In: Quagliariello E (ed) Atti dell seminario di study biologici, vol 4. Adriatica Editrice, Bari, pp 183–193

    Google Scholar 

  • Kröger A, Innerhofer A (1976) The function of menaquinone, covalently bound FAD and iron-sulfur protein in the electron transport from formate to fumarate of Vibrio succinogenes. Eur J Biochem 69:487–495

    Google Scholar 

  • Kröger A, Unden G (1985) The function of menaquinone in bacterial lectron transport. In: Lenaz G (ed) coenzyme Q. John Wiley & Sons, Chichester, pp 285–300

    Google Scholar 

  • Kröger A, Dadak V, Klingenberg M, Diemer F (1971) On the role of quinones in bacterial electron transport. Differential roles of ubiquinone and menaquinone in Protus rettgeri. Eur J Biochem 21:322–333

    Google Scholar 

  • Körtner C, Lauterbach F, Tripier D, Unden G, Kröger A (1990) The fumarate reductase of Wolinella succinogenes contains a diheme cytochrome b. Mol Microbiol 4(5):855–860

    Google Scholar 

  • Lauterbach F, Körtner C, Albracht SPJ, Unden G, Kröger A (1990) The fumarate reductase operon of Wolinella succinogenes: sequence and expression of the frdA and frdB genes. Arch Microbiol 154:386–393

    Google Scholar 

  • Magnusson K, Philips MK, Guest JR, Rutberg L (1986) Nucleotide sequence of the gene for cytochrome b558 of the Bacillus subtilis succinate dehydrogenase complex. J Bacteriol 166:1067–1071

    Google Scholar 

  • Paulsen J, Kröger A, Thauer RK (1986) Energy-driven reverse of electron transport in catabolism of Desulfuromonas acetocidans. Arch Microbiol 144:78–83

    Google Scholar 

  • Philips MK, Hederstedt L, Hasnain S, Rutberg L, Guest JR (1987) Nucleotide sequence encoding the flavoprotein and iron-sulfur protein subunits of the Bacillus subtilis PY79 succinate dehydrogenase complex. J Bacteriol 169:864–873

    Google Scholar 

  • Schnorf U (1966) Der Einfluß von Substituenten auf Redoxpotential und Wuchseigenschaften von Chinonen. Doctoral Thesis, Nr 3871, ETH Zürich

  • Unden G, Kröger A (1981) The function of the subunits of the fumarate reductase complex of Vibrio succinogenes. Eur J Biochem 120:577–584

    Google Scholar 

  • de Vrij W, van den Burg B, Konings WN (1987) Spectral and potentiometric analysis of cytochromes from Bacillus subtilis. Eur J Biochem 166:589–595

    Google Scholar 

  • Wallace BJ, Young IG (1977) Role of quinones in electron transport to oxygen and nitrate in Escherichia coli. Studies with A ubiA - menA -double quinone mutant. Biochim Biophys Acta 461: 84–100

    Google Scholar 

  • White PJ (1972) The nutrition of Bacillus megaterium and Bacillus subtilis. J Gen Microbiol 71:505–514

    Google Scholar 

  • Wissenbach U, Kröger A, Unden G (1990) The specific functions of menaquinone and demethylmenaquinone in anaerobic respiration with fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate by Escherichia coli. Arch Microbiol 154: 60–66

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemma, E., Unden, G. & Kröger, A. Menaquinone is an obligatory component of the chain catalyzing succinate respiration in Bacillus subtilis . Arch. Microbiol. 155, 62–67 (1990). https://doi.org/10.1007/BF00291276

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00291276

Key words

Navigation