Skip to main content
Log in

Analysis of the regulation of the Aspergillus nidulans penicillin biosynthesis gene aat (penDE), which encodes acyl coenzyme A : 6-aminopenicillanic acid acyltransferase

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

The regulation of the Aspergillus nidulans penicillin biosynthesis gene aat (penDE), which encodes acyl coenzyme A : 6-aminopenicillanic acid acyltransferase (AAT), was analysed. Major transcriptional start sites map within 100 nucleotides upstream from the aat initiation codon. To study the regulation of aat expression, various aat-lacZ gene fusions were constructed, in which the aat promoter region was fused in frame with the Escherichia coli lacZ reporter gene. A. nidulans strains carrying recombinant plasmids integrated as single copies at the chromosomal argB locus were identified. In both fermentation and minimal media, aat-lacZ expression was maximal during the first 24 h of a fermentation run. Compared with minimal medium, aat-lacZ expression was increased two-fold in fermentation medium. Although AAT specific activity was reduced in mycelia grown on glucose instead of lactose, expression of aat-lacZ gene fusions was not repressed on glucose, suggesting that the glucose effect is mediated posttranscriptionally. The effect of glucose on AAT activity was reversed by further incubation of glucose-grown mycelia on lactose. Neither the inclusion of the first intron of the aat gene in the aat-lacZ fusion integrated at the chromosomal argB locus, nor the disruption of the acvA gene had any regulatory effect on aat-lacZ expression. In the heterologous, non-penicillin producer A. niger, basal expression of aat-lacZ gene fusions was observed at about the same level as in A. nidulans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aharonowitz Y, Cohen G, Martin JF (1992) Penicillin and cephalosporin biosynthetic genes: structure, organisation, regulation, and evolution. Annu Rev Microbiol 46:461–495

    Google Scholar 

  • Alvarez E, Cantoral JM, Barredo JL, Diez B, Martin JF (1987) Purification to homogeneity and characterization of acyleoenzyme A: 6-aminopenicillanic acid acyltransferase of Penicillium chrysogenum. Antimicrob Agents Chemother 31:1675–1682

    Google Scholar 

  • Arst HN Jr, Scazzocchio C (1985) Formal genetic methodology of Aspergillus nidulans as applied to the study of control systems. In: Bennett JW, Lasure LL (eds) Gene manipulations in fungi. Academic Press, New York, pp 309–343

    Google Scholar 

  • Ballance DJ, Turner G (1985) Development of a high-frequency transforming vector for Aspergillus nidulans. Gene 36:321–331

    Google Scholar 

  • Barredo JL, Van Solingen P, Diez B, Alvarez E, Cantoral JM, Kattevilder A, Smaal EB, Groenen MAM, Venstra AE, Martin JF (1989) Cloning and characterization of the acyl-coenzyme A:6-amino-penicillanic-acid-acyltransferase gene of Penicillium chrysogenum. Gene 83:291–300

    Google Scholar 

  • Bradford MM (1976) A rapid sensitive method for the quantitation of micrograms quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–252

    Google Scholar 

  • Brakhage AA, Turner G (1992) L-Lysine repression of penicillin biosynthesis and expression of penicillin biosynthesis genes acvA and ipnA in Aspergillus nidulans. FEMS Microbiol Lett 98:123–128

    Google Scholar 

  • Brakhage AA, Turner G (1995) Biotechnical genetics of antibiotic biosynthesis. In: Esser K, Lemke PA (eds) The Mycota II. Kück U (ed) Genetics and Biotechnology. Springer Verlag, Heidelberg, pp 263–285

    Google Scholar 

  • Brakhage AA, Van den Brulle J (1995) Use of reporter genes to identify recessive trans-acting mutations specifically involved in the regulation of Aspergillus nidulans penicillin biosynthesis genes. J Bacteriol 171:2781–2788

    Google Scholar 

  • Brakhage AA, Wozny M, Putzer H (1990) Structure and nucleotide sequence of the Bacillus subtilis phenylalanyl-tRNA synthetase genes. Biochimie 72:725–734

    Google Scholar 

  • Brakhage AA, Browne P, Turner G (1992) Regulation of Aspergillus nidulans penicillin biosynthesis and penicillin biosynthesis genes acvA and ipnA by glucose. J Bacteriol 174:3789–3799

    Google Scholar 

  • Brakhage AA, Browne P, Turner G (1994) Analysis of penicillin biosynthesis and the expression of penicillin biosynthesis genes of Aspergillus nidulans by targeted disruption of the acvA gene. Mol Gen Genet 242:57–64

    Google Scholar 

  • Buxton FP, Swynne DI, Davies RW (1985) Transformation of Aspergillus niger using the argB gene of Aspergillus nidulans. Gene 37:207–214

    Google Scholar 

  • Clutterbuck AJ (1993) Aspergillus nidulans: nuclear genes. In: O'Brien SJ (ed) Genetic maps (6th edn). Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 3.71–84

    Google Scholar 

  • Davis MA, Hynes MJ (1989) Regulatory genes in Aspergillus nidulans. Trends Genet 5:14–19

    Google Scholar 

  • Demain AL (1983) Biosynthesis of β-lactam antibiotics. In: Demain AL, Solomon NA (eds) Antibiotics containing the β-lactam structure, vol I. Springer Verlag, New York, pp 189–228

    Google Scholar 

  • Espeso EA, Penalva MA (1992) Carbon catabolite repression can account for the temporal pattern of expression of a penicillin biosynthetic gene in Aspergillus nidulans. Mol Microbiol 6:1457–1465

    Google Scholar 

  • Fantes PA, Roberts CF (1973) β-Galactosidase activity and lactose utilization in Aspergillus nidulans. J Gen Microbiol 77:471–486

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    Google Scholar 

  • Fernandez-Canon JM, Penalva MA (1995) Overexpression of two penicillin structural genes in Aspergillus nidulans. Mol Gen Genet 246:110–118

    Google Scholar 

  • Guthrie EP, Chater KF (1990) The level of a transcript required for production of a Streptomyces coelicolor antibiotic is conditionally dependent on a tRNA gene. J Bacteriol 172:6189–6193

    Google Scholar 

  • Kelly DE, Trevethick J, Mountain H, Sudbery PE (1988) Transcript characterization, gene disruption and nucleotide sequence of the Saccharomyces cerevisiae VH12 gene. Gene 66:205–213

    Google Scholar 

  • Luengo JM, Iriso JL, Lopez-Nieto JJ (1986) Direct evaluation of phenylacetyl-CoA:6-aminopenicillanic acid acyltransferase of Penicillium chrysogenum by bioassay. J Antibiot 39:1565–1573

    Google Scholar 

  • MacCabe AP, Riach MBR, Unkles SE, Kinghorn JR (1990) The Aspergillus nidulans npeA locus consists of three contiguous genes required for penicillin biosynthesis. EMBO J 9:279–287

    Google Scholar 

  • MacCabe AP, van Liempt H, Palissa H, Unkles SE, Riach MBR, Pfeifer E, von Döhren H, Kinghorn JR (1991) δ-(L-α-Aminoadipyl)-l-cysteinyl-d-valine synthetase from Aspergillus nidulans. Molecular characterization of the acvA gene encoding the first enzyme of the penicillin biosynthetic pathway. J Biol Chem 266:12646–12654

    Google Scholar 

  • Marahiel MA, Zuber P, Czekay G, Losick R (1987) Identification of the promoter for a peptide antibiotic biosynthesis gene from Bacillus brevis and its regulation in B. subtilis. J Bacteriol 169:2215–2222

    Google Scholar 

  • Montenegro E, Barredo JL, Gutierrez S, Diez B, Alvarez E, Martin JF (1990) Cloning, characterization of the acyl-CoA:6-aminopenicillanic acid acyltransferase gene of Aspergillus nidulans and linkage to the isopencillin N synthase gene. Mol Gen Genet 221:322–330

    Google Scholar 

  • Müller WH, van der Krift TP, Krouwer AJJ, Wösten HAB, van der Voort LHM, Smaal EB, Verkleij AJ (1991) Localisation of the pathway of the pencillin biosynthesis in Penicillium chrysogenum. EMBO J 10:489–495

    Google Scholar 

  • Müller WH, Bovenberg RAL, Groothuis MH, Kattevilder F, Smaal EB, van der Voort LHM, Verkleij AJ (1992) Involvement of microbodies in penicillin biosynthesis. Biochim Biophys Acta 1116:210–213

    Google Scholar 

  • Nüesch J, Heim J, Treichler H-J (1987) The biosynthesis of sulfurcontaining β-lactam antibiotics. Ann Rev Microbiol 41:51–75

    Google Scholar 

  • Perez-Esteban B, Orejas M, Gomez-Pardo E, Penalva MA (1993) Molecular characterization of a fungal secondary metabolism promoter: transcription of the Aspergillus nidulans isopenicillin N synthetase gene is modulated by upstream negative elements. Mol Microbiol 9:881–895

    Google Scholar 

  • Pontecorvo G, Roper JA, Hemmons LM, MacDonald KD, Buxton AWJ (1953) The genetics of Aspergillus nidulans. Adv Genet 5:141–238

    Google Scholar 

  • Pruess DL, Johnson MJ (1967) Penicillin acyltransferase in Penicillium chrysogenum. J Bacteriol 94:1502–1508

    Google Scholar 

  • Queener SW (1990) Molecular biology of penicillin and cephalosporin biosynthesis. Antimicrob Agents Chemother 34:943–948

    Google Scholar 

  • Raeder U, Broder P (1985) Rapid preparation of DNA from filamentous fungi. FEMS Lett Appl Microbiol 1:17–20

    Google Scholar 

  • Ramon D, Carramolino L, Patino C, Sanchez F, Penalva MA (1987) Cloning and characterization of the isopenicillin N synthetase gene mediating the formation of the β-lactam ring in Aspergillus nidulans. Gene 57:171–181

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Sazer S, Schimke RT (1986) A re-examination of the 5′ termini of mouse dihydrofolate reductase RNA. J Biol Chem 261:4685–4690

    Google Scholar 

  • Skatrud PL (1991) Molecular biology of the β-lactam-producing fungi. In: Bennett JW, Lasure LL (eds). More gene manipulations in fungi. Academic Press, New York, pp 364–395

    Google Scholar 

  • Smith DJ, Earl AJ, Turner G (1990a) The multifunctional peptide synthetase performing the first step of penicillin biosynthesis is a 421 073 dalton protein similar to Bacillus brevis peptide antibiotic synthetases. EMBO J 9:2743–2750

    Google Scholar 

  • Smith DJ, Burnham MKR, Bull JH, Hodgson JE, Ward JM, Browne P, Brown J, Barton B, Earl AJ, Turner G (1990b) β-Lactam antibiotic biosynthetic genes have been conserved in clusters in prokaryotes and eukaryotes. EMBO J 9:741–747

    Google Scholar 

  • Timberlake WE, Marshall MA (1988) Genetic regulation of development in Aspergillus nidulans. Trends Genet 4:162–169

    Google Scholar 

  • Tobin MB, Fleming MD, Skatrud PL, Miller JR (1990) Molecular characterization of the acyl-coenzyme A: isopenicillin N acyltransferase gene (penDE) from Penicillium chrysogenum and Aspergillus nidulans and activity of recombinant enzyme in Escherichia coli. J Bacteriol 172:5908–5914

    Google Scholar 

  • Tobin MB, Baldwin JE, Cole SCJ, Miller JR, Skatrud PL, Sutherland JD (1993) The requirement for subunit interaction in the production of Penicillium chrysogenum acylcoenzyme A:isopenicillin N acyltransferase in Escherichia coli. Gene 132:199–206

    Google Scholar 

  • Turner G, Brown J, Kerry-Williams S, Bailey AM, Ward M, Punt PJ, van den Hondel CAMJJ (1989) Analysis of the oliC promoter of Aspergillus nidulans. In: Nevalainen H, Penttilä M (eds) Proceedings of the EMBO-Alko Workshop on Molecular Biology of Filamentous Fungi (Helsinki), vol. 6. Foundation for Biotechnical and Industrial Fermentation Research, Helsinki, Finland, pp 101–109

    Google Scholar 

  • Van Gorcom RFM, Punt PJ, Pouwels PH, van den Hondel CAMJJ (1986) A system for the analysis of expression signals in Aspergillus. Gene 48:211–217

    Google Scholar 

  • Wingender E (1990) Transcription regulating proteins and their recognition sequences. CRC Critical Reviews Eukaryotic Gene Expression 1:11–48

    Google Scholar 

  • Whiteman PA, Abraham EP, Baldwin JE, Fleming MD, Schofield CJ, Sutherland JD, Willis AC (1990) Acyl coenzyme A:6-aminopenicillanic acid acyltransferase from Penicillium chrysogenum and Aspergillus nidulans. FEBS LETT 262:342–344

    Google Scholar 

  • Zhang J, Demain AL (1992) Regulation of ACV synthetase activity by carbon sources and their metabolites. Arch Microbiol 158:364–369

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. A. M. J. J. van den Hondel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litzka, O., Then Bergh, K. & Brakhage, A.A. Analysis of the regulation of the Aspergillus nidulans penicillin biosynthesis gene aat (penDE), which encodes acyl coenzyme A : 6-aminopenicillanic acid acyltransferase. Molec. Gen. Genet. 249, 557–569 (1995). https://doi.org/10.1007/BF00290581

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00290581

Key words

Navigation