Skip to main content

Advertisement

Log in

Physiology and taxonomy of scleractinian corals: a case study in the genus Stylophora

  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

The morphology and skeletal characteristics of colonies of the coral genus Stylophora living on the reef edge at 1 m depth on the Jordanian coast of the Gulf of Aqaba (Red Sea) are those of S. mordax (Dana 1846) which has not been reported previously from that area. These colonies were considered earlier as ecomorphs of S. pistillata (Esper 1797) which lives down to at least 67 m on the reef slopes. Growth, organic content and metabolism were compared in colonies living at different depths (1,5,10 and 30 m). The trends of twelve parameters between 1 and 5 m were different from the variation observed between 5 and 30 m. Colonies living at 1 m have a higher chlorophyll content but a lower metabolic activity and growth rate than colonies living at 5 m. Most of these pecularities cannot be explained by the influence of environmental factors. It is therefore suggested that S. mordax is a valid taxon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnes DJ, Chalker BE (in press) Calcification and photosynthesis of reef-building coral and algae. In: Dubinsky Z (ed) Coral reef ecosystems. Elsevier, Amsterdam

  • Björkman O (1981) Responses to different quantum flux density. In: Lange OL, Osmond CB, Ziegler H (eds) Physiological plant ecology. I. Responses to the physical environment. Springer, Berlin Heidelberg New York, pp 57–107

    Google Scholar 

  • Blank RJ, Trench RK (1985) Speciation and symbiotic dinoflagellates. Science 229:656–658

    Google Scholar 

  • Calkins J (1982) A method for the estimation of the penetration of biologically injurious solar ultraviolet radiation into natural waters. In: Calkins J (ed) The role of solar ultraviolet radiation in marine ecosystems. Plenum, New York, pp 247–261

    Google Scholar 

  • Coles SL, Jokiel PL (1978) Synergistic effects of temperature, salinity and light on the hermatypical coral Montipora verrucosa. Mar Biol 49:187–195

    Google Scholar 

  • Dana JD (1846–1849) Zoophytes. US Exploring Exped 1838–1842 7:1–740; pl 1–61

    Google Scholar 

  • Dennison WC, Barnes DJ (1988) Effect of water motion on coral photosynthesis and calcification. J Exp Mar Biol Ecol 115:67–77

    Google Scholar 

  • Ditlev H (1980) A field guide to the reef-building corals of the Indo-Pacific. Backhuys, Rotterdam and Scandinavian Science Press, Klampenborg

    Google Scholar 

  • Dunlap WC, Chalker BE (1986) Identification and quantitation of near-UV absorbing compounds (S-320) in a hermatypic scleractinian. Coral Reefs 5:155–159

    Google Scholar 

  • Dykens JA, Shick JM (1984) Photobiology of the symbiotic sea anemone, Anthopleura elegantissima: defenses against photodynamic effects, and seasonal acclimatation. Biol Bull 167:683–697

    Google Scholar 

  • Erez J (1978) Vital effect on stable-isotope composition seen in Foraminifera and coral skeletons. Nature 273:199–202

    Google Scholar 

  • Esper EJC (1797) Die Pflanzenthiere. Fortsetzungen I, Nürnberg: 1–230

  • Falkowski PG, Jokiel PL, Kinzie III RA (in press) Irradiance and corals. In: Dubinsky Z (ed) Coral reef ecosystem. Elsevier, Amsterdam

  • Faure G (1982) Recherche sur les peuplements de Scléractiniaires des récifs coralliens de l'archipel des Mascareignes (Océan Indien Occidental). Thèse de doctorat d'état, Université d'Aix-Marseille II, p 206

  • Gattuso J-P (1985) Features of depth effects on Stylophora pistillata, an hermatypic coral in the Gulf of Aqaba (Jordan, Red Sea). Proc 5th Int Coral Reef Congr 6:95–100

    Google Scholar 

  • Gattuso J-P (1987) Ecomorphologie, métabolisme, croissance et calcification du Scléractiniaire à zooxanthelles Stylophora pistillata (golfe d'Aqaba, mer Rouge)-Influence de l'éclairement. Thèse de doctorat, Université d'Aix-Marseille II, p 289

  • Gattuso J-P, Jaubert J (1988a) Computation of metabolic quotients in plant-animal symbiotic units. J Theor Biol 130:205–212

    Google Scholar 

  • Gattuso J-P, Jaubert J (1988b) Long-term photoacclimatation of transplanted colonies of the zooxanthellate scleractinian coral Stylophora pistillata. 6th Int Coral Reef Symp, p 34 (abstr)

  • Graus RR, Chamberlain JA Jr, Boker AM (1977) Structural modification of corals in relation to waves and currents. In: Frost SH, Weiss MP, Saunders JB (eds) Reefs and related carbonatesecology and sedimentology. American Association of Petroleum Geologists, Tulsa, pp 135–153

    Google Scholar 

  • Gravier C (1911) Les récifs de coraux et les madréporaires de la baie de Tadjourah (Golfe d'Aden). Ann Inst Océanogr 2:1–101

    Google Scholar 

  • Halldal P (1968) Photosynthetic capacities and photosynthetic action spectra of endozoic algae of the massive coral Favia. Biol Bull 134:411–424

    Google Scholar 

  • Hamilton HGH, Brakel WH (1984) Structure and coral fauna of East African reefs. Bull Mar Sci 34:248–266

    Google Scholar 

  • Harris GP (1978) Photosynthesis, productivity and growth: the physiological ecology of phytoplankton. Arch Hydrobiol Beih Ergebn Limnol 10:1–171

    Google Scholar 

  • Hulings NC (1979) Currents in the Jordan Gulf of Aqaba. dirasat 6:21–33

    Google Scholar 

  • Huston M (1985) Variation in coral growth rates with depth at Discovery Bay, Jamaica. Coral Reefs 4:19–25

    Google Scholar 

  • Hutchings PA (1978) Non-colonial cryptofauna. In: Stoddart DR, Johannes RE (eds) Coral reef: research methods. UNESCO, Paris, pp 251–261

    Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New apectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanzen 167:191–194

    Google Scholar 

  • Johannes RE, Wiebe WJ (1970) Method for determination of coral tissue biomass. Limnol Oceanogr 15:822–824

    Google Scholar 

  • Jokiel PL (1978) Effects of water motion on reef corals. J Exp Mar Biol Ecol 35:87–97

    Google Scholar 

  • Jokiel PL (1980) Solar ultraviolet radiation and coral reef epifauna. Science 207:1069–1071

    Google Scholar 

  • Jokiel PL, Maragos JE, Franzisket L (1978) Coral growth: buoyant weight technique. In: Stoddart DR, Johannes RE (eds) Coral reef: research methods. UNESCO, Paris, pp 379–396

    Google Scholar 

  • Jokiel PL, York RH Jr (1982) Solar ultraviolet photobiology of the reef coral Pocillopora damicornis and symbiotic zooxanthellae. Bull Mar Sci 32:301–315

    Google Scholar 

  • Jokiel PL, York RH Jr (1984) Importance of ultraviolet radiation in photoinhibition of microalgal growth. Limnol Oceanogr 29:192–199

    Google Scholar 

  • Klunzinger CB (1879) Die Korallenthiere des rothen Meeres, Bd 2. Gutmann, Berlin, S 1–88, pl 1–10

    Google Scholar 

  • Kühlmann DHH (1983) Composition and ecology of deep-water coral associations. Helgol Wiss Meeresunters 36:183–204

    Google Scholar 

  • Krinsky NI (1978) Non-photosynthetic functions of carotenoids. Philos Trans R Soc Lond B 284:581–590

    Google Scholar 

  • Lang JC (1984) Whatever works: the variable importance of skeletal and of non-skeletal characters in scleractinian taxonomy. Paleontogr Am 54:18–44

    Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Loya Y, Slobodkin LB (1971) The coral reefs of Eilat (Gulf of Eilat, Red Sea). Symp Zool Soc Lond 28:117–139

    Google Scholar 

  • Maragos JE (1972) A study of the ecology of Hawaiian reef corals. PhD thesis, University of Hawaii, p 290

  • Maragos JE (1978) Coral growth: geometrical relationships. In: Stoddart DR, Johannes RE (eds) Coral reefs: research methods. UNESCO, Paris, pp 543–550

    Google Scholar 

  • Marenzeller E Von (1907) Riffkorallen. Expeditionen S. M. Schiff “Pola” in das Rote Meer. Zool Erg 26:27–97. Denskschr Kais Akad Math Naturw 80

    Google Scholar 

  • Maske H (1984) Daylight ultraviolet radiation and the photoinhibition of phytoplankton carbon uptake. J Plankton Res 6:351–357

    Google Scholar 

  • Mayr E (1969) Principles of systematic zoology. McGraw-Hill, New York, p 428

    Google Scholar 

  • Mergner H, Svoboda A (1977) Productivity and seasonal changes in selected reef areas in the Gulf of Aqaba (Red Sea). Helgol Wiss Meeresunters 30:383–399

    Google Scholar 

  • Pillai CSG, Scheer G (1976) Report on stony corals from the Maldive Archipelago. Zoologica 43:1–83

    Google Scholar 

  • Potts DC (1978) Differentiation in coral populations. Atoll Res Bull 220:55–74

    Google Scholar 

  • Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Ann Rev Plant Physiol 35:15–44

    Google Scholar 

  • Randall RH, Myers RF (1983) The corals: guide to the coastal resources of Guam. University of Guam Press, Guam, p 128

    Google Scholar 

  • Reiss Z, Hottinger L (1984) The Gulf of Aqaba. Ecological micropaleontology. Springer, Berlin Heidelberg New York, p 354

    Google Scholar 

  • Roth AA, Clausen CD, Yahiku PY, Clausen VE, Cox WW (1982) Some effects of light on coral growth. Pac Sci 36:65–81

    Google Scholar 

  • Samuelsson G, Richardson K (1982) Photoinhibition at low quantum flux densities in a marine dinoflagellate (Amphidinium carterae). Mar Biol 70:21–26

    Google Scholar 

  • Scelfo GM (1985) The effects of visible and solar ultraviolet radiation on a UV-absorbing compound and chlorophyll-a in a Hawaiian zoanthid. Proc 5th Int Coral Reef Congr 6:107–112

    Google Scholar 

  • Scheer G, Pillai CSG (1974) Report on Scleractinia from the Nicobar Islands. Zoologica 42:1–75

    Google Scholar 

  • Scheer G, Pillai CSG (1983) Report on the stony corals from the Red Sea. Zoologica 45:1–198

    Google Scholar 

  • Siebeck O (1981) Photoreactivation and depth-dependant UV tolerance in reef coral in the Great Barrier Reef/Australia. Naturwissenschaften 68:426–428

    Google Scholar 

  • Titlyanov EA, Zvalinskii VI, Shaposhnikova MG, Leletkin VA (1982) Some adaptation mechanisms of coral-reef formations of Australia to light intensity. Sov J Mar Biol 7:93–102

    Google Scholar 

  • Trench RK, Blank RJ (1987) Symbiodinium microadriaticum Freudenthal, S. goreauii sp. nov., S. kawagutii sp. nov. and S. pilosum sp. nov.; gymnodinoid dinoflagellate symbionts of marine invertebrates. J Physcol 23:469–481

    Google Scholar 

  • UNESCO (1985) Coral taxonomy. UNESCO Rep Mar Sci 33: 1–42

    Google Scholar 

  • Vaughan TW (1907) Recent Madreporaria of the Hawaiian Islands and Laysan. US Natl Mus Bull 49:1–427

    Google Scholar 

  • Vaughan TW, Wells JW (1943) Revision of the suborders, families and genera of the Scleractinia. Geol Soc Am Spec Pap 44:1–363; pl 1–51

    Google Scholar 

  • Veron JEN (1982) The species concept in “Scleractinia of Eastern Australia”. Proc 4th Int Coral Reef Symp 2:183–186

    Google Scholar 

  • Veron JEN, Pichon M (1976) Scleractinia of Eastern Australia. Part I. Aust Inst Mar Sci Monogr Ser 1:1–86

    Google Scholar 

  • Veron JEN, Pichon M (1979) Scleractinia of Eastern Australia. Part III. Aust Inst Mar Sci Monogr Ser 4:1–422

    Google Scholar 

  • Wells JW (1956) Scleractinia. In: Moore RC (ed) Treatise on invertebrate paleontology. Coelenterata. Geol Soc Am and Kansas Press, pp F328–F440

  • Whitehead NE, Vaugelas J de, Parsi P, Navarro M-C (1988) Preliminary study of uranium and thorium redistribution in Callichirus laurae burrows, Gulf of Aqaba (Red Sea). Oceanol Acta 11:259–266

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gattuso, J.P., Pichon, M. & Jaubert, J. Physiology and taxonomy of scleractinian corals: a case study in the genus Stylophora . Coral Reefs 9, 173–182 (1991). https://doi.org/10.1007/BF00290419

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00290419

Keywords

Navigation