Skip to main content
Log in

Overexpression of two penicillin structural genes in Aspergillus nidulans

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

We have placed two different penicillin structural genes from Aspergillus nidulans, ipnA (encoding isopenicillin N synthetase, IPNS) and acyA (encoding acyl-CoA:6-aminopenicillanic acid acyltransferase, AAT), under the control of the strong alcA promoter [alcA(p)]. Single copies of these transcriptional fusions were targeted to the same chromosomal location and conditions have been worked out which simultaneously allow induction of the alcA(p) and support penicillin biosynthesis. Transcriptional induction of the chimeric genes alcA(p)::ipnA or alcA(p)::acyA(cdna) in the relevant recombinant strains results in 10-fold higher levels of the ipnA or acyA transcripts than those resulting from transcription of the corresponding endogenous genes. This increase causes a 40-fold rise in IPNS activity or a 8-fold rise in AAT activity. Despite this rise in enzyme levels, forced expression of the ipnA gene results in only a modest increase in levels of exported penicillin, whereas forced expression of the acyA gene reduces penicillin production, showing that neither of these enzymes is rate-limiting for penicillin biosynthesis in A. nidulans. A genomic version of the alcA(p)::acyA fusion, in which the acyA gene is interrupted by three small introns, is inducible by threonine to a lesser extent (as determined by both acyA mRNA levels and AAT enzyme levels) than the corresponding cDNA version, suggesting that processing of the introns present in the primary transcript may limit acyA expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams TH, Boylan MT, Timberlake WE (1988) brlA is necessary and sufficient to direct conidiophore development in Aspergtillus nidulans. Cell 54:353–362

    Google Scholar 

  • Alvarez E, Messchaert B, Montenegro E, Gutiérrez S, Diez B, Barredo JL, Martin JF (1993) The isopenicillin-N acyltransferase of Penicillium chrysogenum has isopenicillin-N amidohydrolase, 6-aminopenicillanic acid acyltransferase and penicillin amidase activities, all of which are encoded by the single penDE gene. Eur J Biochem 215:323–332

    Google Scholar 

  • Arst HN Jr, Bailey CR (1977) The regulation of carbon metabolism in Aspergillus nidulans. In: Smith J, Pateman J (eds) Genetics and physiology of Aspergillus. Academic Press, London, pp 131–146

    Google Scholar 

  • Bailey CR, Arst HN Jr (1975) Carbon catabolite repression in Aspergillus nidulans. Eur J Biochem 51:573–577

    Google Scholar 

  • Brakhage AA, Browne P, Turner G (1992) Regulation of Aspergtillus nidulans penicillin biosynthesis and penicillin biosynthesis genes acvA and ipnA by glucose. J Bacteriol 174:3789–3799

    Google Scholar 

  • Clutterbuck AJ (1974) Aspergillus nidulans. In: King RC (ed) Handbook of genetics, vol 1. Plenum Press, New York, pp 447–510

    Google Scholar 

  • Dowzer CEA, Kelly JM (1991) Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol Cell Biol 11:5701–5709

    Google Scholar 

  • Espeso E, Peñalva MA (1992) Carbon catabolite repression can account for the temporal pattern of expression of a penicillin structural gene in Aspergillus nidulans. Mol Microbiol 6:1457–1465

    Google Scholar 

  • Fernández-Cañón JM, Reglero A, Martínez-Blanco H, Luengo JM (1989) Uptake of phenylacetic acid by Penicillium chrysogenum Wis 54–1255: a critical regulatory point in penicillin biosynthesis. J Antibiotics 9:1398–1409

    Google Scholar 

  • Fraenkel DG (1992) Genetics and intermediary metabolism. Annu Rev Genet 26:159–177

    Google Scholar 

  • Gómez-Pardo E, Peñalva MA (1990) The upstream region of the ipnA gene determines expression during secondary metabolism in Aspergillus nidulans. Gene 89:109–115

    Google Scholar 

  • Gurr SJ, Unkles, SE, Kinghorn JR (1987) The structure and organization of nuclear genes of filamentous fungi. In: Kinghorn JR (ed) Gene structure in eukaryotic microbes. IRL Press, Oxford, pp 93–139

    Google Scholar 

  • Gwynne DI, Buxton FP, Williams SA, Garven S, Davies RW (1987) Genetically engineered secretion of active human interferon and a bacterial endoglucanase from Aspergillus nidulans. Biotechnology 5:713–719

    Google Scholar 

  • Holt G, Macdonald KD (1968) Penicillin production and its mode of inheritance in Aspergillus nidulans. Antonie van Leeuwenhoek 34:409–416

    Google Scholar 

  • Kell DB, Westerhoff HV (1986) Metabolic control theory: its role in microbiology and biotechnology. FEMS Microbiol Rev 39:305–320

    Google Scholar 

  • Kulmburg P, Prangé T, Mathieu M, Sequeval D, Scazzocchio C, Felenbok, B (1991) Correct intron splicing generates a new type of putative zinc-binding domain in a transcriptional activator of Aspergillus nidulans. FEBS Lett 280:11–16

    Google Scholar 

  • Kulmburg P, Judewicz N, Mathieu M, Lenouvel F, Sequeval D, Scazzocchio C, Felenbok B (1992) Specific binding sites for the activator protein, ALCR, in the alcA promoter of the ethanol regulon of Aspergillus nidulans. J Biol Chem 267:21146–21153

    Google Scholar 

  • Kulmburg P, Mathieu M, Dowzer C, Kelly J, Felenbok B (1993) Specific binding sites in the alcR-alcA promoters of the ethanol regulon for the CREA repressor governing carbon catabolite repression in Aspergillus nidulans. Mol Microbiol 7:847–857

    Google Scholar 

  • Ligget RW, Koffier H (1948) Corn steep liquor in microbiology. Bacteriol Rev 12:297–311

    Google Scholar 

  • Lockington RA, Sealy-Lewis HM, Scazzocchio C, Davies RW (1985) Cloning and characterisation of the ethanol utilisation regulon in Aspergillus nidulans. Gene 33:137–149

    Google Scholar 

  • Lockington RA, Scazzocchio C, Sequeval D, Mathieu M, Felenbok B (1987) Regulation of alcR, the positive regulatory gene of the ethanol utilization regulon of Aspergtillus nidulans. Mol Microbiol 1:275–281

    Google Scholar 

  • Luengo JM, Peñalva, MA (1994) Penicillin biosynthesis. In: Martinelli S, Kinghorn JR (eds) A spergillus: 50 years on. Elsevier, Amsterdam, pp 603–638

    Google Scholar 

  • Luengo JM, Iriso JL, López-Nieto MJ (1986) Direct evaluation of phenylacetyl-CoA: 6-aminopenicillanic acid acyltransferase of Penicillium chrysogenum by bioassay. J Antibiotics 39:1565–1573

    Google Scholar 

  • MacCabe A, Riach M, Unkles S, Kinghorn J (1990) The Aspergtillus nidulans npeA locus consists of three contiguous genes required for penicillin biosynthesis. EMBO J 9:279–287

    Google Scholar 

  • MacCabe A, van Liempt H, Palissa H, Unkless S, Riach M., Pfeifer E., von Döhren H, Kinghorn J (1991) δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine synthetase from Aspergillus nidulans. J Biol Chem 256:12646–12654

    Google Scholar 

  • Marshall MA, Timberlake WE (1991) Aspergillus nidulans wetA activates spore-specific gene expression. Mol Cell Biol 11:55–62

    Google Scholar 

  • Martín-Villacorta J, Reglero A, Luengo JM (1991) Acyl-CoA: 6-APA acyltransferase from Penicillium chrysogenum. Studies on its hydrolytic activity. J Antibiotics 44:108–110

    Google Scholar 

  • Mart'inez-Blanco H, Reglero A, Fernández-Valverde M, Ferrero MA, Moreno MA, Peñalva MA, Luengo JM (1992) Isolation and characterization of the acetyl-CoA synthetase from Penicillium chrysogenum. Involvement of this enzyme in the biosynthesis of penicillins. J Biol Chem 267:5474–5481

    Google Scholar 

  • Merrick MJ, Caten CE (1975) The inheritance of penicillin titre in wild-type isolates of Aspergillus nidulans. J Gen Microbiol 86:283–293

    Google Scholar 

  • Mirabito PM, Adams TH, Timberlake WE (1989) Interactions of three sequentially expressed genes control temporal and spatial specificity in Aspergillus development. Cell 57:859–868

    Google Scholar 

  • Montenegro E, Barredo JL, Gutiérrez S, Díez B, Alvarez E, Martín JF (1990) Cloning, characterization of the acyl-CoA:6-amino penicillanic acid acyltransferase gene of Aspergillus nidulans and linkage to the isopenicillin N synthetase gene. Mol Gen Genet 221:322–330

    Google Scholar 

  • Mullaney EJ, Hamer JE, Roberti KA, Yelton M, Timberlake W (1985) Primary structure of the trpC gene from Aspergillus nidulans. Mol Gen Genet 199:37–45

    Google Scholar 

  • Müller WH, van der Krift TP, Krouwer AJJ, Wönsten HAB, van der Voort LHM, Smaal EB, Verkleij, AJ (1991) Localization of the pathway of penicillin biosynthesis in Penicillium chrysogenum. EMBO J 10:489–495

    Google Scholar 

  • Parker R, Siciliano PG, Guthrie C (1987) Recognition of the TACTAAC box during mRNA splicing in yeast involves base pairing to the U2-like snRNA. Cell 49:229–239

    Google Scholar 

  • Peñalva MA, Vian A, Patiño C, Pérez-Aranda A, Ramón D (1989) Molecular biology of penicillin production in Aspergillus nidulans. In Hershberger CL, Queener SW (eds) Genetics and molecular biology of industrial microorganisms. American Society for Microbiology, Washington DC, pp 256–261

    Google Scholar 

  • Pérez-Esteban B, Orejas M, Gómez-Pardo E, Peñalva MA (1993) Molecular characterisation of a fungal secondary metabolism promoter: transcription of the Aspergillus nidulans ipnA gene is modulated by upstream negative elements. Mol Microbiol 9:881–895

    Google Scholar 

  • Peñalva MA, Moya A, Dopazo J, Rambn D (1990) Sequences of isopenicillin N synthetase genes suggest horizontal gene transfer from prokaryotes to eukaryotes. Proc R Soc Lond B 241:164–169

    Google Scholar 

  • Peñalva MA, Pérez-Esteban B, Gómez-Pardo E., Orejas M, Espeso E (1992) Penicillin production by Aspergillus nidulans: studies on the regulation of expression of the ipnA gene. In: Stahl U, Tudzynski P (eds) Molecular biology of filamentous fungi. VCH, Weinheim, FRG, pp 217–227

    Google Scholar 

  • Ramón D, Carramolino L, Patiño C, Sánchez F, Peñalva MA (1987) Cloning and characterization of the isopenicillin N synthetase gene mediating the formation of the β-lactam ring in Aspergillus nidulans. Gene 57:171–181

    Google Scholar 

  • Ramos FR, López-Nieto MJ, Martin JF (1985) Isopenicillin N synthetase of Penicillium chrysogenum, an enzyme which converts δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine to isopenicillin N. Antimicrobial Agents Chemother 27:380–387

    Google Scholar 

  • Smith DJ, Bull JH, Edwards J, Turner G (1989) Amplification of the isopenicillin N synthetase gene in a strain of Penicillium chrysogenum producing high levels of penicillin. Mol Gen Genet 216:492–497

    Google Scholar 

  • Timberlake W, Marshall M (1989) Genetic engineering of filamentous fungi. Science 244:1313–1317

    Google Scholar 

  • Veenstra AE, van Solingen P, Bovenberg RAL, van der Voort LHM (1991) J Biotechnol 17:81–90

    Google Scholar 

  • Walsh K, Koshland DE Jr (1985) Characterization of rate-controlling steps in vivo by use of an adjustable expression vector. Proc Natl Acad Sci USA 82:3577–3581

    Google Scholar 

  • Waring RB, May GS, Morris RN (1989) Characterization of an inducible expression system in Aspergillus nidulans using alcA and tubulin-coding genes. Gene 79:119–130

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. A. M. J. J. van den Hondel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Cañón, J.M., Peñalva, M.A. Overexpression of two penicillin structural genes in Aspergillus nidulans . Molec. Gen. Genet. 246, 110–118 (1995). https://doi.org/10.1007/BF00290139

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00290139

Key words

Navigation