Skip to main content
Log in

Die freisetzung von Acetylcholin durch die motorischen Nervenendigungen

Deutung experimenteller Befunde durch ein Analogmodell

  • Published:
Kybernetik Aims and scope Submit manuscript

Summary

  1. 1.

    Hypotheses concerning the transport of acethylcholine (Ach) and of changes in the coefficient of release during and after repetitive stimulation are presented. These hypotheses are based on the conception that an action potential releases a certain amount of immediately available Ach from a reservoir at the motor nerve ending.

  2. 2.

    Corresponding to these hypotheses an electrical analog model was conceived. The differential equations deduced from the model were programmed on an analog computer.

  3. 3.

    The changes in Ach-release during and after repetitive stimulation, known from biological experiments either with Curare- or with Magnesium-blocked preparations, could be reproduced qualitatively when changing only one parameter of the model.

  4. 4.

    For the purposes of quantitative simulation, data from various biological experiments, partly from other authors, partly from our own laboratory, were used. In most of the experiments the curves derived from the model are found to be within the standard deviation of the biological data.

  5. 5.

    It is concluded that a system of lesser complexity does not equally well lead to a simulation of the biological data.

  6. 6.

    The analog relationships between the model and the biological processes are discussed. By use of the model it may be possible to simulate the release of transmitter at other synapses too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Anderson-Cedergren, E.: Ultrastructure of motor end-plate and sarcoplasmic components of mouse skeletal muscle fiber. J. Ultrastruct. Res., Suppl. 1 (1959).

  2. Berman, M., E. Shahn, and M. F. Weiss: The routine fitting of kinetic data to models. A mathematical formalism for digital computers. Biophys. J. 2, 275–287 (1962).

    Google Scholar 

  3. Berman, M.: The formulation and testing of models. Ann. N.Y. Acad. Sci. 108, 182–194 (1963).

    Google Scholar 

  4. Birks, R., H. E. Huxley, and B. Katz: The fine structure of the neuromuscular junction of the frog. J. Physiol. (Lond.) 150, 134–168 (1960).

    Google Scholar 

  5. Birks, R., and F. C. MacIntosh: Acetylcholine metabolism at nerve-endings. Brit. med. Bull. 13, 157–161 (1957).

    Google Scholar 

  6. Birks, R., and F. C. MacIntosh: Acetylcholine metabolism of a sympathetic ganglion. Canad. J. Biochem. 39, 787–827 (1961).

    Google Scholar 

  7. Boyd, I. A., and A. R. Martin: The end-plate potential in mammalian muscle. J. Physiol. (Lond.) 132, 74–91 (1956).

    Google Scholar 

  8. Braun, M., R. F. Schmidt, and M. Zimmermann: Facilitation at the frog neuromuscular junction during and after repetitive stimulation. Pflügers Arch. ges. Physiol. 287, 41–55 (1966).

    Google Scholar 

  9. Braun, M., and R. F. Schmidt: Potential changes recorded from the frog motor nerve terminal during its activation. Pflügers Arch. ges. Physiol. 287, 56–80 (1966).

    Google Scholar 

  10. Brooks, V. B.: An intracellular study of the action of repetitive nerve volleys and of botulinum toxin on miniature end-plate potentials. J. Physiol. (Lond.) 134, 264–277 (1956).

    Google Scholar 

  11. Brooks, V. B., and R. E. Thies: Reduction of quantum content during neuromuscular transmission. J. Physiol. (Lond.) 162, 298–310 (1962).

    Google Scholar 

  12. Del Castillo, J., and L. Engbaek: The nature of the neuromuscular block produced by magnesium. J. Physiol. (Lond.) 124, 370–384 (1954).

    Google Scholar 

  13. Del Castillo, J., and B. Katz: The effect of magnesium on the activity of motor nerve endings. J. Physiol. (Lond.) 124, 553–559 (1954a).

    Google Scholar 

  14. Del Castillo, J., and B. Katz: Quantal components of the endplate potential. J. Physiol. (Lond.) 124, 560–573 (1954b).

    Google Scholar 

  15. Del Castillo, J., and B. Katz: Statistical factors involved in neuromuscular facilitation and depression. J. Physiol. (Lond.) 124, 574–585 (1954c).

    Google Scholar 

  16. Del Castillo, J., and B. Katz: Changes in end-plate activity produced by presynaptic polarization. J. Physiol. (Lond.) 124, 586–604 (1954d).

    Google Scholar 

  17. Del Castillo, J., and B. Katz: Local activity at a depolarized nerve-muscle junction. J. Physiol. (Lond.) 128, 396–411 (1955b).

    Google Scholar 

  18. Del Castillo, J., and B. Katz: Biophysical aspects of neuro-muscular transmission. Progr. Biophys. 6, 121–170 (1956).

    Google Scholar 

  19. Eccles, J. C.: The physiology of nerve cells, 270 pp. Baltimore: John Hopkins Press 1957.

    Google Scholar 

  20. Eccles, J. C.: The physiology of synapses, 316 pp. Berlin-Göttingen-Heidelberg: Springer 1964.

    Google Scholar 

  21. Eccles, J. C., B. Katz, and S. W. Kuffler: Nature of the endplate potential in curarized muscle. J. Neurophysiol. 4, 362–387 (1941).

    Google Scholar 

  22. Elmquist, D., and D. J. M. Quastel: A quantitative study of end-plate potentials in isolated human muscle. J. Physiol. (Lond.) 178, 505–529 (1965).

    Google Scholar 

  23. Elmquist, D., and D. J. M. Quastel: Presynaptic action of hemicholinium at the neuromuscular junction. J. Physiol. (Lond.) 177, 463–482 (1965).

    Google Scholar 

  24. Elmquist, D., and D. S. Feldmann: Calcium dependance of spontaneous acetylcholine release at mammalian motor nerve terminals. J. Physiol. (Lond.) 181, 487–497 (1965).

    Google Scholar 

  25. Fatt, P., and B. Katz: An analysis of the end-plate potential recorded with an intra-cellular electrode. J. Physiol. (Lond.) 115, 320–369 (1951).

    Google Scholar 

  26. Feng, T. P.: Studies on the neuro-muscular junction. XVIII. The local potentials around N-M junctions induced by single and multiple volleys. Chin. J. Physiol. 15, 367–404 (1940).

    Google Scholar 

  27. Feng, T. P.: Studies on the neuromuscular junction. XXVI. The changes in the end-plate potential during and after prolonged stimulation. Chin. J. Physiol. 16, 341–372 (1941).

    Google Scholar 

  28. Hubbard, J. I.: Post-activation changes at the mammalian neuromuscular junction. Nature (Lond.) 184, 1945 (1959).

    Google Scholar 

  29. Hubbard, J. I.: Repetitive stimulation at the mammalian neuromuscular junction and the mobilization of transmitter. J. Physiol. (Lond.) 169, 641–662 (1963).

    Google Scholar 

  30. Hubbard, J. I., and R. F. Schmidt: An electrophysiological investigation of mammalian motor nerve terminals. J. Physiol. (Lond.) 166, 145–167 (1963).

    Google Scholar 

  31. Hubbard, J. I., and W. D. Willis: Hyperpolarization of mammalian motor nerve terminals. J. Physiol. (Lond.) 163, 115–137 (1962a).

    Google Scholar 

  32. Hubbard, J. I., and W. D. Willis: Reduction of transmitter output by depolarization. Nature (Lond.) 193, 1924–1925 (1962b).

    Google Scholar 

  33. Hutter, O. F.: Post-tetanic restoration of neuromuscular transmission blocked by d-Tubocurarine. J. Physiol. (Lond.) 118, 216–227 (1952).

    Google Scholar 

  34. Jenkinson, D.H.: The nature of the antagonism between calcium and magnesium ions at the neuromuscular junction. J. Physiol. (Lond.) 138, 434–444 (1957).

    Google Scholar 

  35. Katz, B.: The transmission of impulse from nerve to muscle, and the subcellular unit of synaptic action. Proc. roy. Soc. B 155, 455–479 (1962).

    Google Scholar 

  36. Katz, B., and R. Miledi: Propagation of elctric activity in motor nerve terminals. Proc. Roy. Soc. B 161, 453–482 (1965a).

    Google Scholar 

  37. Katz, B., and R. Miledi: The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuseular junction. Proc. Roy. Soc. B 161, 483–495 (1965b).

    Google Scholar 

  38. Katz, B., and R. Miledi: The release of acetylcholine from nerve endings by graded electric pulses. Proc. Roy. Soc. B 167, 23–38 (1967).

    Google Scholar 

  39. Katz, B., and R. Miledi: The effect of temperature on the synaptic delay at the neuromuscular junction. J. Physiol. (Lond.) 181, 656–670 (1965c).

    Google Scholar 

  40. Katz, B., and R. Miledi: The timing of calcium action during neuromuscular transmission. J. Physiol. (Lond.) 189, 535–544 (1967).

    Google Scholar 

  41. Katz, B., and R. Miledi: The quantal release of transmitter substances in studies in physiology (D.R. Cuetis, and D. R. McInteyre). Berlin-Heidelberg-New York: Springer 1965d.

    Google Scholar 

  42. Krnjević, K., and R. Miledi: Failure of neuromuscular propagation in rats. J. Physiol. (Lond.) 140, 440–461 (1958).

    Google Scholar 

  43. Kruckenberg, P., K.-D. Luschnat, R. Sandweg u. J. Lichey: Simulierung der Acetylcholinfreisetzung an den motorischen Nervenendigungen durch ein elektrisches Modell. Pflügers Arch. ges. Physiol. 289, S. R7 (1966).

    Google Scholar 

  44. Liley, A. W.: An investigation of spontaneous activity at the neuromuscular junction of the rat. J. Physiol. (Lond.) 132, 650–666 (1956a).

    Google Scholar 

  45. Liley, A. W.: The quantal components of the mammalian end-plate potential. J. Physiol. (Lond.) 133, 571–587 (1956b).

    Google Scholar 

  46. Liley, A. W.: The effects of presynaptic polarization on the spontaneous activity at the mammalian neuromuscular junction. J. Physiol. (Lond.) 134, 427–443 (1956c).

    Google Scholar 

  47. Liley, A. W., and K. A. K. North: An electrical investigation of effects of repetitive stimulation on mammalian neuromuscular junction. J. Neurophysiol. 16, 509–527 (1953).

    Google Scholar 

  48. Lundberg, A., and H. Quilisch: Presynaptic potentiation and depression of neuro-muscular transmission in frog and rat. Acta physiol. scand. 30, Suppl. 111, 11–120 (1953a).

    Google Scholar 

  49. Lundberg, A., and H. Quilisch: On the effect of calcium on presynaptic potentation and depression at the neuromuscular junction. Acta physiol. scand. 30, Suppl. 111, 121–129 (1953b).

    Google Scholar 

  50. Martin, A. R.: A further study of the statistical composition of the end-plate potential. J. Physiol. (Lond.) 130, 114–122 (1955).

    Google Scholar 

  51. Martin, A. R.: Quantal nature of synaptic transmission. Physiol.Rev. 46, 51–66 (1966).

    Google Scholar 

  52. Merton, P. A.: Problems of muscular fatigue. Brit. med. Bull. 12, 219–221 (1956).

    Google Scholar 

  53. Nooney, G. C.: Allocation of errors to theory and experiment. J. theoret. Biol. 10, 46–53 (1966).

    Google Scholar 

  54. Otsuka, M., M. Endo, and Y. Nonomura: Presynaptic nature of neuromuscular depression. Jap. J. Physiol. 12, 573–584 (1962).

    Google Scholar 

  55. Palade, G. E., and S. L. Palay: Electron microscope observations of interneuronal and neuromuscular synapses. Anat. Rec. 118, 335 (1954).

    Google Scholar 

  56. Reger, J. F.: The fine structure of neuromuscular synapses of gastrocnemii from mouse and frog. Anat. Rec. 130, 7–24 (1958).

    Google Scholar 

  57. Robertson, J. D.: The ultrastructure of a reptilian myoneural junction. J. biophys. biochem. Cytol. 2, 381–394 (1956).

    Google Scholar 

  58. Robertson, J. D.: Electron microscopy of the motor end-plate and the neuromuscular spindle. Amer. J. phys. Med. 39, 1–43 (1960).

    Google Scholar 

  59. Sandweg, R., H. Bauer u. P. Kruckenberg: Unver öffentlichte Beobachtungen.

  60. Takeuchi, A.: The longlasting depression in neuromuscular transmission of frog. Jap. J. Physiol. 8, 102–113 (1958).

    Google Scholar 

  61. Takeuchi, A., and N. Takeuchi: Changes in potassium concentration around motor nerve terminals, produced by current flow, and their effects on neuromuscular transmission. J. Physiol. (Lond.) 155, 46–58 (1961).

    Google Scholar 

  62. Thies, R. E.: Neuromuscular depression and the apparent depletion of transmitter in mammalian muscle. J. Neurophysiol. 28, 427 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mit Unterstützung der Deutschen Forschungsgemeinschaft (Ga 37/15).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruckenberg, P. Die freisetzung von Acetylcholin durch die motorischen Nervenendigungen. Kybernetik 4, 113–130 (1968). https://doi.org/10.1007/BF00288544

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00288544

Navigation