Skip to main content
Log in

A deficiency mutant of the Gc system

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

In the course of a paternity investigation an apparent mother-child incompatibility was observed in the Gc system. An extensive family study was undertaken to test the hypothesis of a silent gene or null allele responsible for the contrary phenotypes: the mother had the type Gc2, the son was Gc1. The apparent incompatibility was due to a “pseudo” silent allele, called Gc*1 Θ, which controlled a group-specific component with extremely reduced serum concentrations. This double-band mutant could be differentiated from the Gc 1S bands by two-dimensional electrophoresis: isoelectric focusing (IEF)/6M urea IEF. The allele Gc*1 Θ was found in 12 persons from this family; it was not associated with any apparent disease state. Also present in this family was the variant Gc1C1. Pedigree analysis revealed a possible (not significant) distorted segregation ratio for the allele Gc*1C1, which was found in 22 of 33 offspring from marriages with one parent heterozygous for Gc*1C1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brinkmann B, Söder R, Janssen W (1981) Ein weiteres Beispiel für Gc*0. In: Hummel K, Gerchow J (eds) Biomathematical evidence of paternity. Springer, Berlin Heidelberg New York, pp 127–130

    Google Scholar 

  • Carrel RW, Jepsson JO, Laurell CB, Brennan SO, Owen MC, Vaughan L, Boswell DR (1982) Structure and variation of human 107-1. Nature 298:329–334

    Google Scholar 

  • Cleve H, Patutschnick W, Nevo S, Wendt GG (1978) genetic studies on the Gc subtypes. Hum Genet 44:117–122

    Google Scholar 

  • Cleve H, Patutschnick W (1979) Neuraminidase treatment reveals sialic acid differences in certain genetic variants of the Gc system (vitamin D binding protein). Hum Genet 47:193–198

    Google Scholar 

  • Cleve H, Constans J, Berg S, Hoste B, Ishimoto G, Matsumoto H, Spees EK, Weber W (1981) Gc revisited: six further Gc-phenotypes delineated by isoelectric focusing and by polyacrylamide gel electrophoresis. Hum Genet 57:312–316

    Google Scholar 

  • Constans J, Viau M (1977) Group-specific component: evidence for two subtypes of the Gc 1 gene. Science 198:1070–1071

    Google Scholar 

  • Constans J, Cleve H, Viau M, Gouaillard C (1978a) Gc T (Toulouse): a fast variant of the group specific component system in a Pyrenean family. Vox Sang 34:46–50

    Google Scholar 

  • Constans J, Viau M, Cleve H, Jaeger G, Quilici JC, Pallison MJ (1978b) Analysis of the Gc polymorphism in human populations by isoelectrofocusing on polyacrylamide gels. Demonstration of subtypes of the Gc 1 allele and of additional Gc variants. Hum Genet 41:53–60

    Google Scholar 

  • Constans J, Cleve H, Bennet A, Bouillon R, Cox DW, Daiger SP, Ehnholm C, Fujiki N, Johnson AM, Kirk RL, Kühnl P, Martin W, Matsumoto H, Mayr WR, Miyake K, Miyazaki T, Omoto K, Porck HJ, Seger P, Thymann M, Tills D, Toyomasu M, van Baelen H, Vavrusa B, Viau M (1979) Group-specific component: Report on the first International Workshop. Hum Genet 48:143–149

    Google Scholar 

  • Constans J, Viau M, Gouaillard C, Bouissou C, Clerc A (1980a) Binding affinities between VDBP and vitamin D3, 25-(OH)-D3, 24,25-(OH)2-D3 and 1,25-(OH)2-D3 studied by electrophoretic methods (PAGE-IEF, combined IEF-Electrophoresis) and printimmunofixation. In: Radola BJ (ed) Electrophoresis '79. Walter de Gruyter, Berlin, pp 701–709

    Google Scholar 

  • Constans J, Viau M, Bouissou C (1980b) Affinity differences for the 25-OH-D3 associated with the genetic heterogeneity of the vitamin D-binding protein. FEBS Letters 111:107–111

    Google Scholar 

  • Constans J (1981) La protéine serique de transport de la vitamine D chez l'homme. Son polymorphisme, ses activités metaboliques. These, Université Paul-Sabatier de Toulouse, France

  • Daiger SP, Schanfield MS, Cavalli-Sforza LL (1975) Group-specific component (Gc) proteins bind vitamin D and 25-Hydroxy-vitamin D. Proc Natl Acad Sci (USA) 72:2076–2080

    Google Scholar 

  • Dykes DD, Copouls B, Polesky H (1983) Description of six new variants at the Gc locus. Hum Genet 63:35–37

    Google Scholar 

  • Henningsen K (1966) A silent allele within the Gc-system. 4th Int Meeting Forensic Medicine, Copenhagen

  • Henningsen K, Jacobsen P, Mikkelsen M (1969) B-F chromosome translocation associated with father-child incompatibility within the Gc-system. Hum Hered 19:283–287

    Google Scholar 

  • Hirschfeld J (1959) Immuno-electrophoretic demonstration of qualitative differences in human sera and their relation to the haptoglobins. Acta Path Microbiol Scand 47:160–168

    Google Scholar 

  • Hirschfeld J (1960) Immunoelectrophoresis-procedure and application to the study of group-specific variations in sera. Science Tools 7:18–25

    Google Scholar 

  • Johnson AM, Cleve H, Alper C (1975) Variants of the group-specific component system as demonstrated by immunofixation electrophoresis. Report of a new variant, Gc Boston (GcB). Am J Hum Genet 27:728–736

    Google Scholar 

  • Kitchin FD (1965) Demonstration of the inherited serum group-specific protein by acrylamide electrophoresis. Proc Soc Exp Biol Med 118:304–307

    Google Scholar 

  • Laurell C-B (1965) Antigen-antibody crossed electrophoresis. Anal Biochem 10:358–361

    Google Scholar 

  • Laurell C-B (1967) Quantitative estimation of proteins by electrophoresis in antibody-containing agarose gel. In: Peeters H (ed) Protides of the biological fluids. Elsevier Publ Co, Amsterdam 14: 499–502

    Google Scholar 

  • Mancini M, Carbonara AO, Heremans JF (1965) Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemist 2:235–254

    Google Scholar 

  • Mikkelsen M, Jacobsen P, Henningsen K (1977) Possible localization of Gc-system on chromosome 4. Loss of long arm 4 material associated with father-child incompatibility within the Gc-system. Hum Hered 27:105–107

    Google Scholar 

  • Moorhead PS, Nowell PC, Mellman WC, Battips DM, Hungerford DA (1960) Chromosome preparations of leukocytes cultured from peripheral blood. Exp Cell Res 20:613–616

    Google Scholar 

  • Patscheider H, Dirnhofer R (1979) Scheinbar entgegengesetzte Homozygotie der Gc und EsD-Merkmale in drei Generationen. Z Rechtsmed 82:243–249

    Google Scholar 

  • Prokop O, Rackwitz A (1968) Beweis für die Existenz eines “neuen” Gc-Gens, aufgedeckt durch eine anscheinend inkompatible Mutter-Kind-Paarung: Mutter Gc1-1, Kind Gc2-2. Deutsch Z f Gerichtl Med 62:261–268

    Google Scholar 

  • Ritchie RF, Smith R (1976) Immunofixation I: General principle and application to agarose gel electrophoresis. Clin Chem 22:497–499

    Google Scholar 

  • Salaman MR, Williamson AR (1971) Isoelectric focusing of proteins in the native and denatured states. Biochem J 122:93–99

    Google Scholar 

  • Thymann M, Hjalmarsson K, Svensson M (1982) Five new Gc variants detected by isoelectrofocusing in agarose gel. Hum Genet 60:340–343

    Google Scholar 

  • Walther JU, Stengel-Rutkowski S, Murken J-D (1974) Observations with G banding on human chromosomes. Humangenetik 25:49–51

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vavrusa, B., Cleve, H. & Constans, J. A deficiency mutant of the Gc system. Hum Genet 65, 102–107 (1983). https://doi.org/10.1007/BF00286643

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00286643

Keywords

Navigation