Skip to main content
Log in

Suppressor mutation of position-effect variegation in Drosophila melanogaster affecting chromatin properties

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The dominant mutation Su-var(2)1 01which suppresses position-effect variegation and displays recessive butyrate sensitivity was found to result in significant hyperacetylation of histone H4. This biochemical finding, as well as the genetic properties of this mutation, strongly suggest that the wild-type product of the corresponding locus is involved in histone H4 deacetylation. In larvae containing the suppressor mutation the accessibility of chromatin to endogenous nucleases is significantly increased which might be causally connected with histone H4 hyperacetylation. The suppressor mutation Su-var(2)1 01has, therefore, to be classified as a chromatin condensation mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker WK (1968) Position-effect variegation. Adv Genet 1:133–169

    Google Scholar 

  • Bellard M, Kuo MT, Dretzen G, Chambon P (1980) Differential nuclease sensitivity of the ovalbumin and β-globin chromatin region in erythrocytes and oviduct cells of laying hen. Nucleic Acids Res 8:2737–2750

    Google Scholar 

  • Billings PC, Orf JW, Palmer DK, Talmage DA, Pan CG, Blumenfeld M (1979) Anomalous electrophoretic mobility of Drosophila phosphorylated H1 histone: is it related to the compaction of satellite DNA into heterochromatin? Nucleic Acids Res 6:2151–2164

    Google Scholar 

  • Boffa LC, Gruss RJ, Allfrey VG (1981) Manifold effects of sodium butyrate on nuclear functions. J Biol Chem 256:9612–9621

    Google Scholar 

  • Candido EPM, Reeves R, Davie JR (1978) Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14:105–113

    Google Scholar 

  • Davie JR, Candido EPM (1978) Acetylated histone H4 is preferentially associated with template active chromatin. Proc Natl Acad Sci USA 75:3574–3577

    Google Scholar 

  • Doenecke D, Gallwitz D (1982) Acetylation of histones in nucleosomes. Mol Cell Biochem 44:113–128

    Google Scholar 

  • Elgin SCR, Weintraub H (1975) Chromosomal proteins and chromatin structure. Annu Rev Biochem 44:725–774

    Google Scholar 

  • Garel A, Axel R (1976) Selective digestion of transcriptionally active ovalbumin genes from oviduct nuclei. Proc Natl Acad Sci USA 73:3966–3970

    Google Scholar 

  • Giancotti V, Russo E, Cristini F, Graziosi G, Micali F, Crane-Robinson C (1984) Histone modification in early and late Drosophila embryos. Biochem J 218:321–329

    Google Scholar 

  • Gottesfeld JM, Garrard WT, Bagi G, Wilson RF, Bonner J (1974) Partial purification of template active fraction of chromatin. Preliminary report. Proc Natl Acad Sci USA 71:2193–2197

    Google Scholar 

  • Heymann S (1983) Untersuchungen zur Faserorganisation und Transkriptionsaktivität von dekondensiertem Chromatin aus Rattenleber. Prom A Akad der Wissensch der DDR, Berlin

    Google Scholar 

  • Holmgren P, Rasmuson B, Johansson T, Sundquist G (1976) Histone content in relation to amount of heterochromatin and developmental stage in three species of Drosophila. Chromosoma 54:99–116

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Google Scholar 

  • Lindsley DL, Grell EM (1968) Genetic variations of Drosophila melanogaster. Carnegie Inst Washington Publ 627

  • Mottus R, Reeves R, Grigliatti TA (1980) Butyrate suppression of position-effect variegation in Drosophila melanogaster. Mol Gen Genet 178:465–469

    Google Scholar 

  • Oliver D, Chalkley R (1972) An electrophoretic analysis of Drosophila histones. I. Isolation and identification Exp Cell Res 73:295–302

    Google Scholar 

  • Panyim S, Chalkley R (1969) High-resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys 130:337–346

    Google Scholar 

  • Reeves R (1984) Transcriptionally active chromatin. Biochim Biophys Acta 782:343–393

    Google Scholar 

  • Reuter G, Wolff I (1981) Isolation of dominant suppressor mutations for position-effect variegation in Drosophila melanogaster. Mol Gen Genet 182:516–519

    Google Scholar 

  • Reuter G, Werner W, Hoffmann HJ (1982a) Mutants affecting position-effect heterochromatinization in Drosophila melanogaster. Chromosoma 85:539–551

    Google Scholar 

  • Reuter G, Dorn R, Hoffmann HJ (1982b) Butyrate sensitive suppressor of position-effect variegation mutations in Drosophila melanogaster. Mol Gen Genet 188:480–485

    Google Scholar 

  • Reuter G, Dorn R, Wustmann G, Friede B, Rauh G (1986) Third chromosome suppressor of position-effect variegation loci in Drosophila melanogaster. (submitted)

  • Riggs MG, Whittaker RG, Neumann JR, Ingram VM (1977) N-Butyrate causes histone modification in HeLa and Friend erythroleukemia cells. Nature 268:462–464

    Google Scholar 

  • Sealy L, Chalkley R (1978) The effect of sodium butyrate on histone modification. Cell 14:115–121

    Google Scholar 

  • Sinclair DAR, Mottus R, Grigliatti TA (1983) Genes which suppress position-effect variegation in Drosophila melanogaster are clustered. Mol Gen Genet 191:326–333

    Google Scholar 

  • Spofford JB (1976) Position-effect variegation in Drosophila melanogaster. In: Ashburner M, Novitski E (eds) The genetics and biology of Drosophila, vol 1c. Academic Press, New York, pp 955–1018

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorn, R., Heymann, S., Lindigkeit, R. et al. Suppressor mutation of position-effect variegation in Drosophila melanogaster affecting chromatin properties. Chromosoma 93, 398–403 (1986). https://doi.org/10.1007/BF00285820

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00285820

Keywords

Navigation