Skip to main content
Log in

Induction of acid phosphatase and cholinesterase activities in Ps. aeruginosa and their in-vitro control by choline, acetylcholine and betaine

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Choline, acetylcholine and betaine used as a sole carbon source, effectuate in Ps. aeruginosa an acid phosphatase activity in addition to a cholinesterase activity. Induction of both enzyme activities was repressed by succinate or glucose. Cyclic AMP failed to relieve the repression produced by these compounds. Substrates not related to choline and used as a sole source of carbon, were inefficient to produce induction of both enzymes.

The in-vitro action of choline, acetylcholine and betaine on Ps. aeruginosa acid phosphatase and cholinesterase has also been studied. To perform these studies periplasmic extracts obtained by EDTA-lysozyme treatment of the cells grown on choline or betaine as sole source of carbon, were used. Acid phosphatase activity was competitively inhibited by betaine, whereas the inhibition produced by choline and acetylcholine showed competitive and noncompetitive components. Cholinesterase activity was noncompetitively inhibited by betaine. At low acetylthiocholine concentration choline was an inhibitor of cholinesterase, whereas at high substrate concentration choline raised the hydrolysis rate of acetylthiocholine.

These findings allow the conclusion that acid phosphatase and cholinesterase are specifically induced by choline and its metabolites derivatives. Kinetic results led us to postulate that acid phosphatase and cholinesterase contain a similar allosteric site. This site would either be of an anionic nature or show affinity to a methyl group or display both characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gilboa-Garber, N., Zakut, J. and Mizrahi, L., 1973. Biochim. Biophys. Acta 297: 120–124.

    Google Scholar 

  2. Tani, Y., Nagasawa, H., Sugusaki, H. and Ogata, K., 1975. Agr. Biol. Chem. 39: 1287–1294.

    Google Scholar 

  3. Goldstein, D. B. and Goldstein, A., 1973. J. Chem. Microbiol. 8: 8–17.

    Google Scholar 

  4. Fitch, W. M., 1963. Biochemistry 2: 1217–1221.

    Google Scholar 

  5. Changeaux, J. P., 1966. Mol. Pharmacol. 2: 369–392.

    Google Scholar 

  6. Belleau, B. and Di Tullio, V., 1971. Can. J. Biochem. 49: 1131–1133.

    Google Scholar 

  7. Kitz, R. J., Braswell, L. M. and Ginsburg, S., 1970. Mol. Pharmacol. 6: 108–121.

    Google Scholar 

  8. Iverson, F., 1971. Mol. Pharmacol. 7: 129–135.

    Google Scholar 

  9. Rosenberry, T. L. and Bernhard, S. A., 1971. Biochemistry. 10: 4114–4120.

    Google Scholar 

  10. Roufogalis, B. D. and Quist, E. E., 1972. Mol. Pharmacol. 8: 41–49.

    Google Scholar 

  11. Kato, G., Tan, E. and Yung, J., 1972. J. Biol. Chem. 247: 3186–3189.

    Google Scholar 

  12. Mooser, G. and Sigman, D. S., 1974. Biochemistry 13: 2299–2307.

    Google Scholar 

  13. Tomlinson, G., Mutus, B. and Mc Lennan, I., 1980. Mol. Pharmacol. 8: 33–39.

    Google Scholar 

  14. Lisa, A. T., Garrido, M. N. and Domenech, C. E., 1981. Arq. Biol. Tecnol. 24: 1981.

    Google Scholar 

  15. Cheng, K. J., Ingram, J. M. and Costerton, J. W., 1970. J. Bacteriol. 104: 748–753.

    Google Scholar 

  16. Domenech, C. E., Garrido, M. N., Machado de Domenech, E. E. and Lisa, A. T., 1981. Moll. Cell. Biochem. 34: 95–99.

    Google Scholar 

  17. Witholt, B., Boekhout, M., Brock, M., Kingma, J., Van Heerikhuizen, H. and De Leij, L., 1976. Anal. Biochem. 74: 160–170.

    Google Scholar 

  18. Ellman, G. L., Courtney, K. D., Andres, V. and Fearthersone, R. M., 1961. Biochem. Pharmacol. 7: 88–95.

    Google Scholar 

  19. Reiner, E. and Simeon, V., 1975. Croatica Chemica Acta 47: 321–331.

    Google Scholar 

  20. Dvorak, H. F., Brockman, R. W. and Heppel, L. A., 1967. Biochemistry 6: 1743–1751.

    Google Scholar 

  21. Carrillo-Castañeda, G. and Ortega, M. V., 1967. Biochim. Biophys. Acta 146: 535–543.

    Google Scholar 

  22. Malveaux, F. J. and San Clemente, C. L., 1969. J. Bacteriol. 97: 1209–1214.

    Google Scholar 

  23. Smyth, P. F. and Clarke, P. H., 1975. J. Gen. Microbiol. 90: 81–90.

    Google Scholar 

  24. Fitzgerald, J. W., Knight-Olliff, L. C., Stewart, G. J. and Beauchamp, N. F., 1978. Can. J. Microbiol. 24: 1567–1573.

    Google Scholar 

  25. Siegel, L. S., Hylemon, P. B. and Phibbs, P. V., Jr., 1977. J. Bacteriol. 129: 87–96.

    Google Scholar 

  26. Phillips, A. T. and Mulfinger, L. M., 1981. J. Bacteriol. 145: 1286–1292.

    Google Scholar 

  27. Kight-Olliff, L. C. and Fitzgerald,J. W., 1978. Can. J. Microbiol. 24: 811–817.

    Google Scholar 

  28. Bellion, E. and Kim, Y. S., 1978. Biochim. Biophys. Acta 541: 425–434.

    Google Scholar 

  29. Monod, J., Changeaux, J. P. and Jacob, F., 1963. J. Mol. Biol. 6: 306–329.

    Google Scholar 

  30. Wilson, I. B., 1952. J. Biol. Chem. 197: 215–225.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisa, T.A., Garrido, M.N. & Domenech, C.E. Induction of acid phosphatase and cholinesterase activities in Ps. aeruginosa and their in-vitro control by choline, acetylcholine and betaine. Mol Cell Biochem 50, 149–155 (1983). https://doi.org/10.1007/BF00285640

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00285640

Keywords

Navigation