Skip to main content
Log in

Molecular basis of chromosome banding

I. The effect of mouse DNA fractions on two fluorescent dyes in vitro

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The effects of mouse satellite, main band and total DNA on the fluorescence intensity of quinacrine and of the bibenzimidazole derivative Hoechst 33258 were tested in solution. No significant differences were noticed between the double-stranded DNAs in spite of the 5% difference in AT-content between satellite and main hand DNA. Single-stranded DNAs enhanced the fluorescence intensity of Hoechst 33258 far less than double-stranded DNAs. Having been denaturated and then reassociated the DNA fractions were intermediate in their enhancing effects on the fluorescence intensity of Hoechst 33258, the differences presumably being due to different degrees of reassociation. The effect of denatured and subsequently reassociated satellite DNA on the fluorescence intensity of quinacrine was similar to that of the native DNAs. Main band and total DNA quenched the fluorescence intensity of quinacrine more after denaturation-reassociation than it did when native. In the discussion the results are related to known cytological data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bostock, C. J., Christie, S.: Quinacrine fluorescence staining of chromosomes and its relationship to DNA base composition. Exp. Cell Res. 86, 157–161 (1974)

    Google Scholar 

  • Bram, S.: Secondary structure of DNA depends on base composition. Nature (Lond.) New. Biol. 232, 174–176 (1971)

    Google Scholar 

  • Chapelle, A. de la, Schröder, J., Selander, R.-K.: Repetitious DNA in mammalian chromosomes. Hereditas (Lund) 69, 149–153 (1971)

    Google Scholar 

  • Chapelle, A. de la, Schröder, J., Selander, R.-K.: In situ localization and characterization of different classes of chromosomal DNA: acridine orange and quinacrine mustard fluorescence. Chromosoma (Berl.) 40, 347–360 (1973a)

    Google Scholar 

  • Chapelle, A. de la, Schröder, J., Selander, R.-K., Stenstrand, K.: Differences in DNA composition along mammalian metaphase chromosomes. Chromosoma (Berl.) 42, 365–382 (1973b)

    Google Scholar 

  • Comings, D. E., Avelino, E., Okada, T. A., Wyandt, H. E.: The mechanism of C- and G- banding of chromosomes. Exp. Cell Res. 77, 469–493 (1973)

    Google Scholar 

  • Comings, D. E., Kovacs, B. W., Avelino, E., Harris, D. C.: Mechanisms of chromosome banding. V. Quinacrine banding. Chromosoma (Berl.) 50, 111–145 (1975)

    Google Scholar 

  • Corneo, G., Ginelli, E., Soave, C., Bernardi, G.: Isolation and characterization of mouse and guinea pig satellite deoxyribonucleic acids. Biochemistry 7, 4373–4379 (1968)

    Google Scholar 

  • Gropp, A., Hilwig, I., Seth, P. K.: Fluorescence chromosome banding patterns produced by a benzimidazole derivative. In: Chromosome identification-technique and applications in biology and medicine. Nobel Symposium 23 (T. Caspersson and L. Zech, eds.), p. 300–305. New York: Academic Press 1973

    Google Scholar 

  • Harbers, K., Spencer, J. H.: Nucleotide clusters in deoxyribonucleic acids. Pyrimidine oligonucleotides of mouse L-cell satellite deoxyribonucleic acid and main-band deoxyribonucleic acid. Biochemistry 13, 1094–1101 (1974)

    Google Scholar 

  • Jones, K. W.: Chromosomal and nuclear location of mouse satellite DNA in individual cells. Nature (Lond.) 225, 912–915 (1970)

    Google Scholar 

  • Jones, K. W., Corneo, G.: Location of satellite and homogeneous DNA sequences on human chromosomes. Nature (Lond.) New Biol. 233, 268–271 (1971)

    Google Scholar 

  • Jones, K. W., Prosser, J., Corneo, G., Ginelli, E.: The chromosomal location of human satellite DNA. III. Chromosoma (Berl.) 42, 445–451 (1973)

    Google Scholar 

  • Kurnit, D. M.: DNA helical content during the C-banding procedure. Cytogenet. Cell Genet. 13, 313–329 (1974)

    Google Scholar 

  • Latt, S. A.: Microfluorimetric detection of deoxyribonucleic acid replication in human metaphase chromosomes. Proc. nat. Acad. Sci. (Wash.) 70, 3395–3399 (1973)

    Google Scholar 

  • Latt, S. A., Brodie, S., Munroe, S. H.: Optical studies of complexes of quinacrine with DNA and chromatin: implications for the fluorescence of cytological chromosome preparations. Chromosoma (Berl.) 49, 17–40 (1974)

    Google Scholar 

  • Marmur, J.: A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. molec. Biol. 3, 208–218 (1961)

    Google Scholar 

  • McIlvaine, T. C.: A buffer solution for colorimetric comparison. J. biol. Chem. 49, 183–186 (1921)

    Google Scholar 

  • Pachmann, U., Rigler, R.: Quantum yield of acridines interacting with DNA of defined base sequence. Exp. Cell Res. 72, 602–608 (1972)

    Google Scholar 

  • Raposa, T., Natarajan, A. T.: Fluorescence banding pattern of human and mouse chromosomes with a benzimidazol derivative (Hoechst 33258). Humangenetik 21, 221–226 (1974)

    Google Scholar 

  • Schnedl, W.: The karyotype of the mouse. Chromosoma (Berl.) 35, 111–116 (1971)

    Google Scholar 

  • Schreck, R. R., Erlanger, B. F., Miller, O. J.: The use of antinucleoside antibodies to probe the organization of chromosomes denatured by ultraviolet irradiation. Exp. Cell Res. 88, 31–39 (1974)

    Google Scholar 

  • Selander, R.-K., Chapelle, A. de la: The fluorescence of quinacrine mustard with nucleic acids. Nature (Lond.) New Biol. 245, 240–244 (1973)

    Google Scholar 

  • Southern, E. M.: Base sequence and evolution of guinea pig α-satellite DNA. Nature (Lond.) 227, 794–798 (1970)

    Google Scholar 

  • Stockert, J. C., Lisanti, J. A.: Acridine-orange differential fluorescence of fast and slow reassociating chromosomal DNA after in situ DNA denaturation and reassociation. Chromosoma (Berl.) 37, 117–130 (1972)

    Google Scholar 

  • Weisblum, B.: Fluorescent probes of chromosomal DNA structure: three classes of acridines. Cold Spr. Harb. Symp. quant. Biol. 37, 441–449 (1973a)

    Google Scholar 

  • Weisblum, B.: Why centric regions of quinacrine-treated mouse chromosomes show diminished fluorescence. Nature (Lond.) 246, 150–151 (1973b)

    Google Scholar 

  • Weisblum, B., Haseth, P. de: Quinacrine, a chromosome stain specific for deoxyadenylatedeoxythymidylate-rich regions in DNA. Proc. nat. Acad. Sci. (Wash.) 69, 629–632 (1972)

    Google Scholar 

  • Weisblum, B., Haenssler, E.: Fluorometric properties of the bibenzimidazole derivative Hoechst 33258, a fluorescent probe specific for AT concentration in chromosomal DNA. Chromosoma (Berl.) 46, 255–260 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simola, K., Selander, RK., de la Chapelle, A. et al. Molecular basis of chromosome banding. Chromosoma 51, 199–205 (1975). https://doi.org/10.1007/BF00284814

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00284814

Keywords

Navigation