Skip to main content
Log in

Functional relationships between genes of the Shaker gene complex of Drosophila

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

Different mutations belonging to the HLI and HLII complementation groups of the haplolethal (HL) region of the Shaker complex (ShC) are described. The HLI complementation group includes viable (hdp), recessive lethals [l(1)1614], semidominant lethals [l(1)8384] and dominant lethals [l(1)5051,l(1)9916, l(1)13193], lack-of-function alleles that affect nervous system, cuticle and muscle development. The HLI complementation group encodes troponin I. HLII lack-of-function mutations [l(1)174 and l(l)4058] affect nervous system development. The semidominant lethal HLI mutation 1(1)8384 shows differential complementation with other mutations in the ME and HL regions of ShC. Thus, heterozygous combinations of l(1)8384 with ME mutations l(1)162 and l(1)387 are poorly viable. The same phenomenon is observed for heterozygotes of l(1)8384 with HL mutations l(1)1199, l(1)2288 and l(1)3014. These specific interactions indicate the existence of functional relationships among the genetic elements of ShC. The implications for the understanding of the functional organization of ShC are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbas JA, Galceran J, Krah-Jengtens I, de la Pompa JL, Canal I, Pongs O, Ferrus A (1991) Troponin I is encoded in the haplolethal region of the Shaker gene complex of Drosophila. Genes Dev. 5:132–140

    Google Scholar 

  • Barbas JA, Galceran J, Torroja L, Prado A, Ferrus A (1993) Abnormal muscle development is caused by a splicing defect affecting selected Troponin I isoforms. Mol Cell Biol 13:1433–1439

    Google Scholar 

  • Baumann A, Krah-Jentgens I, Müller R, Müller-Holtkamp F, Seidel R, Kecskemethy N, Casal J, Ferrús A, Pongs O (1987) Molecular organization of the maternal effect region of the Shaker complex of Drosophila: characterization of an IA channel transcript with homology to vertebrate Na+ channel. EMBO J 6:3419–3429

    Google Scholar 

  • Beall CJ, Fyrberg E (1991) Muscle abnormalities in Drosophila melanogaster heldup mutants are caused by missing or aberrant troponin-I isoforms. J Cell Biol 114:941–951

    Google Scholar 

  • Canal I, Ferrus A (1986) The pattern of early neuronal differentiation in Drosophila melanogaster. J Neurogenet 3:293–319

    Google Scholar 

  • Cantiello HF, Stow JL, Prat AG, Ausiello DA (1991) Actin filaments regulate epithelial sodium channel activity. Am J Physiol 261:882–888

    Google Scholar 

  • Catsch A (1944) Eine erbliche Störung des Bewegungsmechanismus bei Drosophila melanogaster. Z Ind Abst Vererb 82: 64–66

    Google Scholar 

  • Deak II (1977) Mutations of Drosophila melanogaster that affect muscles. J Embryol Exp Morphol 40:35–63

    Google Scholar 

  • de la Pompa JL (1989) Análisis genético del complejo Shaker de Drosophila melanogaster. Thesis, Universidad Autónoma de Madrid, Spain

    Google Scholar 

  • de la Pompa L, Garcia R, Ferrús A (1989) Genetic analysis of muscle development in Drosophila melanogaster. Dev Biol 131:439–454

    Google Scholar 

  • Ferrús A, Llamazares S, de la Pompa JL, Tanouye MA, Pongs O (1990) Genetic analysis of the Shaker gene complex of Drosophila melanogaster. Genetics 125:383–398

    Google Scholar 

  • Fujita SC, Zipursky SL, Benzer S, Ferrús A, Shotwell SL (1982) Monoclonal antibodies against the Drosophila nervous system. Proc Natl Acad Sci USA 79:7929–7933

    Google Scholar 

  • Gisselmann G, Sewing S, Madsen BW, Mallart A, August-Petit D, Müller-Holtkamp F, Ferrús A, Pongs O (1989) The interference of truncated with normal potassium channel subunits leads to abnormal behaviour in transgenic Drosophila melanogaster. EMBO J 8:2359–2364

    Google Scholar 

  • Hadorn E (1948) Gene action in growth and differentiation of lethal mutant of Drosophila melanogaster. Symp Soc Exp Biol 2:117–195

    Google Scholar 

  • Homyk T, Emerson CP (1988) Functional interactions between unlinked muscle genes within haplo insufficient regions of the Drosophila genome. Genetics 119:105–121

    Google Scholar 

  • Hotta Y, Benzer S (1972) Mapping of behaviour in Drosophila mosaics. Nature 240:527–535

    Google Scholar 

  • Humason GL (1972) Animal tissue techniques. Freeman, San Francisco

    Google Scholar 

  • Iverson LE, Tanouye MA, Lester HA, Rudy B (1988) A-type potassium channels expressed from Shaker locus DNA. Proc Natl Acad Sci USA 85:5723–5727

    Google Scholar 

  • Karlik CC, Fyrberg EA (1986) Two Drosophila melanogaster tropomyosin genes: structural and functional aspects. Mol Cell Biol 6:1965–1973

    Google Scholar 

  • Lichtinghagen R, Stocker M, Wittka R, Bohein G, Stüchmer W, Ferrús A, Pongs O (1990) Molecular basis of altered excitability in Shaker mutants of Drosophila melanogaster. EMBOS 9:4399–4407

    Google Scholar 

  • Lindsley DL, Zimm G (1992) The genome of Drosophila melanogaster. Academic Press

  • Miller A (1965) The internal anatomy and histology of the imago of Drosophila melanogaster. In: Demerec M (ed) Biology of Drosophila. Hafner, New York, pp 420–531

    Google Scholar 

  • Perry SV (1979) The regulation of contractile activity in muscle. Biochem Soc Trans 7:593–617

    Google Scholar 

  • Pongs O, Kecskemethy N, Müller R, Krah-Jentgens I, Baumann A, Kilty HH, Canal I, Llamazares S, Ferrús A (1988) Shaker encodes a family of putative potassium channel protein in the nervous system of Drosophila. EMBO J 7:1087–1096

    Google Scholar 

  • Pongs O, Lindermeier J, Zhu XR, Theil T, Engelkamp D, Krah-Jentgens I, Lambrecht HG, Koch KW, Schwemer J, Rivosecchi R, Mallart A, Galcerdn J, Canal I, Barbas J, Ferrus A (1993) Frequenin — a novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system. Neuron 11:15–28

    Google Scholar 

  • Salkoff L, Wyman R (1981) Genetic modification of potassium channels in Drosophila Shaker mutants. Nature 293:228–230

    Google Scholar 

  • Schwarz TL, Tempel BL, Papazian DM, Jan YN, Jan LY (1988) Multiple potassium channel components are produced by alternative splicing at the Shaker locus in Drosophila. Nature 331:137–142

    Google Scholar 

  • Srinivasan Y, Lewallen M, Angelides KJ (1992) Mapping the binding site on ankyrin for the voltage-dependent sodium channel from brain. J Biol Chem 267:7483–7489

    Google Scholar 

  • Tanouye MA, Ferrus A, Fujita SC (1981) Abnormal action potentials associated with the Shaker complex locus of Drosophila. Proc Natl Acad Sci USA 78:6548–6552

    Google Scholar 

  • Tanouye MA, Ferrús A (1985) Action potentials in normal and Shaker mutant Drosophila. J Neurogenet 2:253–271

    Google Scholar 

  • Van der Meer S (1977) Optical clean and permanent whole mount preparation for phase contrast microscopy of cuticular structures of insect larvae. Dros Inf Serv 52:160

    Google Scholar 

  • Zot AS, Potter JD (1987) Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction. Annu Rev Biophys Biophys Chem 16:535–559

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Ashburner

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Pompa, J.L. Functional relationships between genes of the Shaker gene complex of Drosophila . Molec. Gen. Genet. 244, 197–204 (1994). https://doi.org/10.1007/BF00283523

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00283523

Key words

Navigation