Skip to main content
Log in

Multiple regions of a divergent promoter control the expression of the Agrobacterium rhizogenes aux1 and aux2 plant oncogenes

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

The two auxin biosynthesis genes, aux1 and aux2 of Agrobacterium rhizogenes strain A4, are located on opposite DNA strands with a short integenic region (394 bp) between their coding sequences. A functional analysis of this divergent promoter is presented. The transcription initiation sites of the two aux genes were determined and regions important for promoter activity were identified by deletion and transient expression analyses in tobacco protoplasts. The promoter activity of the aux intergenic region was demonstrated. A strong enhancer element contained within an 84 by promoter fragment was identified. Far upstream regions were shown to have negative effects on the promoter activity of the short intergenic region. Interactions between positive elements in the intergenic region and negative effects of the upstream sequences may be the basis of strict control of the auxin biosynthesis necessary for the induction and maintenance of hairy root growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amselem J, Tepfer M (1992) Molecular basis for novel root phenotypes induced by Agrobacterium rhizogenes A4 on cucumber. Plant Mol Biol 19:421–432

    Google Scholar 

  • An G, Ebert PR, Yi BY, Choi CH (1986) Both TATA box and upstream regions are required for nopaline synthase promoter activity in transformed tobacco cells. Mol Gen Genet 203:245–250

    Google Scholar 

  • Bandyopadhyay RS, Bruce WB, Gurley WB (1989) Regulatory elements within the agropine synthase promoter of T-DNA. J Biol Chem 264:19399–19406

    Google Scholar 

  • Barker RF, Idler KB, Thompson DV, Kemp JD (1983) Nucleic acid sequence of the T-DNA region from the Agrobacterium tumefaciens octopine Ti plasmid pTi 15955. Plant Mol Biol 2: 335–350

    Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Google Scholar 

  • Bouchez D, Tourneur J (1991) Organization and nucleotide sequence of the agropine synthesis region on the T-DNA of the Ri plasmid from Agrobacterium rhizogenes. Plasmid 25:27–39

    Google Scholar 

  • Bouchez D, Tokuhisa JG, Liewellyn DJ, Dennis ES, Ellis JG (1989) The ocs-element is a component of the promoters of several T-DNA and plant viral genes. EMBO J 8:4197–4204

    Google Scholar 

  • Bourgin JP (1978) Valine resistant plants from in vitro selected tobacco cells. Mol Gen Genet 161:225–230

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Breeden L, Nasmyth K (1987) Cell cycle control of the yeast HO gene: cis- and trans-acting regulators. Cell 48:389–397

    Google Scholar 

  • Bruce WB, Gurley WB (1987) Functional domains of a T-DNA promoter active in crown gall tumors. Mol Cell Biol 7:59–67

    Google Scholar 

  • Bruce WB, Bandyopadhyay R, Gurley WB (1988) An enhancer-like element present in the promoter of a T-DNA gene from the Ti plasmid of Agrobacterium tumefaciens. Proc Natl Acad Sci USA 85:4310–4314

    Google Scholar 

  • Camilleri C, Jouanin L (1991) The TR-DNA region carrying the auxin synthesis genes of A. rhizogenes agropine type plasmid pRiA4: nucleotide sequence analysis and introduction into tobacco plants. Mol Plant Microb Interact 4:155–162

    Google Scholar 

  • Carcamo J, Maldonado E, Cortes P, Ahn MH, Ha I, Kasai Y, Flint J, Reinberg D (1990) A TATA-like sequence located downstream of the transcription initiation site is required for expression of an RNA polymerase II transcribed gene. Genes Dev 4:1611–1622

    Google Scholar 

  • Chupeau Y, Bourgin JP, Missonier C, Dorion N, Morel G (1974) Préparation et culture de protoplastes de divers Nicotiana. CR Acad Sci [Ser D] t 278:1565–1568

    Google Scholar 

  • Comai L, Kosuge T (1982) Cloning and characterization of iaaM, a virulence determinant of Pseudomonas savastanoï. J Bacteriol 149:40–46

    Google Scholar 

  • DeGreve H, Dhaese P, Seurinck J, Lemmers M, Van Montagu M, Schell J (1982) Nucleotide sequence and transcript map of Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene. J Mol Appl Genet 1:499–512

    Google Scholar 

  • DePater BS, Klinkhamer MP, Amesz PA, De Kam RJ, Memelink J, Hoge JHC, Schilperoort RA (1987) Plant expression signals of the Agrobacterium T-cyt gene. Nucleic Acids Res 15:8267–8281

    Google Scholar 

  • De Vos G, De Beuckeleer M, Van Montagu M, Schell J (1981) Restriction endonuclease mapping of the octopine tumor-inducing plasmid pTiAch5 of Agrobacterium tumefaciens. Plasmid 6:249–253

    Google Scholar 

  • DiRita VJ, Gelvin SB (1987) Deletion analysis of the mannopine synthase gene promoter in sunflower crown gall tumors and Agrobacterium tumefaciens. Mol Gen Genet 207:233–241

    Google Scholar 

  • Ellis JG, Llewellyn DJ, Walker JC, Dennis ES, Peacock WJ (1987) The ocs element: a 16 base pair palindrome essential for activity of the octopine synthase enhancer. EMBO J 6:11–16

    Google Scholar 

  • Fridell YWC, Searles LL (1992) In vivo transcriptional analysis of the TATA-less promoter of the Drosophila melanogaster vermilion gene. Mol Cell Biol 12:4571–4577

    Google Scholar 

  • Gaffney TD, Da Costa E, Silva O, Yamada T, Kosuge T (1990) Indolacetic acid operon of Pseudomonas syringae subsp. savastanoï: transcription analysis and promoter identification. J Bacteriol 172:5593–5601

    Google Scholar 

  • Garfinkel DJ, Nester EW (1980) Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J Bacteriol 144:732–743

    Google Scholar 

  • Garfinkel DJ, Simpson RB, Ream LW, White FF, Gordon MP, Nester EW (1981) Genetic analysis of crown gall: fine structure map of the T-DNA by site-directed mutagenesis. Cell 27:143–153

    Google Scholar 

  • Gidoni D, Bond-Nutter D, Brossio P, Jones J, Bedbrook J, Dunsmuir P (1988) Coordinated expression between two photosynthetic petunia genes in transgenic plants. Mol Gen Genet 211:507–514

    Google Scholar 

  • Gidoni D, Brossio P, Bond-Nutter D, Bedbrook J, Dunsmuir P (1989) Novel cis-acting elements in petunia cab gene promoters. Mol Gen Genet 215:337–344

    Google Scholar 

  • Gielen J, De Beuckeleer M, Seurinck J, Deboeck F, De Greve H, Lemmers M, Van Montagu M, Schell J (1984) The complete nucleotide sequence of the TL-DNA of the Agrobacterium tumefaciens plasmid pTiAch5. EMBO J 3:835–846

    Google Scholar 

  • Gordon CB, Campbell JL (1991) A cell cycle-responsive transcriptional control element and a negative control element in the gene encoding DNA polymerase alpha in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 88:6058–6062

    Google Scholar 

  • Guerche P, Bellini C, Le Moullec JM, Caboche M (1987) Use of a transient expression assay for the optimization of direct gene transfer into tobacco mesophyll protoplasts by electroporation. Biochimie 69:621–628

    Google Scholar 

  • Ha SB, An G (1989) Cis-acting regulatory elements controlling temporal and organ-specific activity of nopaline synthase promoter. Nucleic Acids Res 17:215–223

    Google Scholar 

  • Hooykaas PJJ, Schilperoort RA (1992) Agrobacterium and plant genetic engineering. Plant Mol Biol 19:15–38

    Google Scholar 

  • Huffman GA, White FF, Gordon MP, Nester EW (1984) Hairy root inducing plasmid: physical map and homology to tumor-inducing plasmids. J Bacteriol 157:269–276

    Google Scholar 

  • Inzé D, Follin A, Van Lijsebettens M, Simoens C, Genetello C, Van Montagu M, Schell J (1984) Genetic analysis of the individual T-DNA genes of Agrobacterium tumefaciens; further evidence that two genes are involved in indole-3-acetic acid synthesis. Mol Gen Genet 194:265–274

    Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) Gus fusion: β-glucuronidase is a sensitive and versatile fusion marker in higher plants. EMBO J 6:3901–3907

    Google Scholar 

  • Joshi CP (1987) An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res 15:6643–6653

    Google Scholar 

  • Jouanin L (1984) Restriction map of an agropine-type Ri plasmid and its homologies with Ti plasmids. Plasmid 12:91–102

    Google Scholar 

  • Klee H, Montoya A, Horodyski F, Lichtenstein C, Garfinkel D, Fuller S, Flores C, Peschon J, Nester E, Gordon M (1984) Nucleotide sequence of the tms genes of the pTiA6NC octopine Ti plasmid: two gene products involved in plant tumorigenesis. Proc Natl Acad Sci USA 81:1728–1732

    Google Scholar 

  • Kosuge T, Heskett MG, Wilson EE (1966) Microbial synthesis and degradation of indole-3-acetic acid. J Biol Chem 241:3738–3744

    Google Scholar 

  • Lam E, Katagiri F, Chua NH (1990) Plant nuclear factor ASF-1 binds to an essential region of the nopaline synthase promoter. J Biol Chem 265:9909–9913

    Google Scholar 

  • Leemans J, Deblaere R, Willmitzer L, De Greeve H, Hernalsteens JP (1982) Genetic identification of functions of TL-DNA transcripts in octopine crown galls. EMBO J 1:147–152

    Google Scholar 

  • Leisner SM, Gelvin S (1988) Structure of the octopine synthase upstream activator sequence. Proc Natl Acad Sci USA 85:2553–2557

    Google Scholar 

  • Leung J, Fukuda H, Wing D, Masterson R (1991) Functional analysis of cis-elements, auxin response and early developmental profiles of the mannopine synthase bidirectional promoter. Mol Gen Genet 230:463–474

    Google Scholar 

  • Lichtenstein C, Klee H, Montoya A, Garfinkel D, Fuller S, Flores C, Nester E, Gordon M (1984) Nucleotide sequence and transcript mapping of the tmr gene of the pTiA6NC octopine Ti-plasmid: a bacterial gene involved in plant tumorigenesis. J Mol Appl Genet 2:354–362

    Google Scholar 

  • Lowndes NF, Johnson AL, Johnston LH (1991) Coordination of expression of DNA synthesis genes in budding yeast by a cellcycle regulated trans factor. Nature 350:247–250

    Google Scholar 

  • Mitra A, An G (1989) Three distinct regulatory elements comprise the upstream promoter region of the nopaline synthase gene. Mol Gen Genet 215:294–299

    Google Scholar 

  • Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812

    Google Scholar 

  • Palm CJ, Gaffney T, Kosuge T (1989) Cotranscription of genes encoding indoleacetic acid production in Pseudomonas syringae subsp. savastanoï. J Bacteriol 171:1002–1009

    Google Scholar 

  • Riker AJ (1930) Studies on infectious hairy root of nursery apple trees. J Agric Res 41: 507–540

    Google Scholar 

  • Ryder MH, Tate ME, Kerr A (1985) Virulence properties of strains of Agrobacterium on the apical and basal surfaces of carrot root discs. Plant Physiol 77:215–221

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sassone-Corsi P, Borrelli E (1986) Transcriptional regulation by trans-acting factors. Trends Genet 2:215–219

    Google Scholar 

  • Schröder G, Waffenschmidt S, Weiler EW, Schröder J (1984) The T-region of Ti plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur J Biochem 138:387–391

    Google Scholar 

  • Singh K, Tokuhisa JG, Dennis ES, Peacock WJ (1989) Saturation mutagenesis of the octopine synthase enhancer: correlation of mutant phenotype with binding of a nuclear protein factor. Proc Natl Acad Sci USA 86:3733–3737

    Google Scholar 

  • Smale ST, Baltimore D (1989) The “initiator” as a transcription control element. Cell 57:103–113

    Google Scholar 

  • Smith EF, Townsend CO (1907) A plant tumor of bacterial origin. Science 25:671–673

    Google Scholar 

  • Taylor BH, White FF, Nester EW, Gordon MP (1985) Transcription of Agrobacterium rhizogenes A4 T-DNA. Mol Gen Genet 201:546–553

    Google Scholar 

  • Thomashow LS, Reeves S, Thomashow MF (1984) Crown gall oncogenesis: evidence that a T-DNA gene from the Agrobacterium Ti plasmid pTiA6 encodes an enzyme that catalyses synthesis of indoleacetic acid. Proc Natl Acad Sci USA 81:5071–5075

    Google Scholar 

  • Thomashow MF, Hugly S, Buchholz WG, Thomashow LS (1986) Molecular basis for the auxin-independent phenotype of crown gall tumor tissue. Science 231:616–618

    Google Scholar 

  • Tokuhisa JG, Singh K, Dennis ES, Peacock WJ (1990) A DNAbinding protein factor recognizes two binding domains within the octopine synthase enhancer. Plant Cell 2:215–224

    Google Scholar 

  • Van Onckelen H, Prinsen E, Inze D, Rüdelsheim P, Van Lijsebettens M, Follin A, Schell J, Van Montagu M, De Greef J (1986) Agrobacterium T-DNA gene 1 codes for tryptophan 2-monooxygenase activity in tobacco crown gall cells. FEBS Lett 198:357–360

    Google Scholar 

  • Velten J, Velten L, Hain R, Schell J (1984) Isolation of a dual plant promoter fragment from the Ti plasmid of Agrobacterium tumefaciens. EMBO J 3:2723–2730

    Google Scholar 

  • Verwoerd TC, Dekker BM, Hoekema A (1989) A small-scale procedure for rapid isolation of plant RNAs. Nucleic Acids Res 17:2362

    Google Scholar 

  • Vilaine F, Casse-Delbart F (1987) Independent induction of transformed roots by the TL and TR regions of the Ri plasmid of agropine type A. rhizogenes. Mol Gen Genet 206:17–23

    Google Scholar 

  • White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164: 33–44

    Google Scholar 

  • Willmitzer L, Sanchez-Serrano J, Buschfeld E, Schell J (1982) DNA from Agrobacterium rhizogenes is transferred to and expressed in axenic hairy root plant tissues. Mol Gen Genet 186:16–22

    Google Scholar 

  • Yamada T, Palm CJ, Brooks B, Kosuge T (1985) Nucleotide sequences of the Pseudomonas savastanoï indolacetic acid genes show homology with Agrobacterium tumefaciens T-DNA. Proc Natl Acad Sci USA 82:6522–6526

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Kondorosi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaudin, V., Camilleri, C. & Jouanin, L. Multiple regions of a divergent promoter control the expression of the Agrobacterium rhizogenes aux1 and aux2 plant oncogenes. Molec. Gen. Genet. 239, 225–234 (1993). https://doi.org/10.1007/BF00281622

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00281622

Key words

Navigation