Skip to main content
Log in

Why plant chromosomes do not show G-bands

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Summary

Giemsa techniques have refused to reveal G-banding patterns in plant chromosomes. Whatever has been differentially stained so far in plant chromosomes by various techniques represents constitutive heterochromatin (redefined in this paper). Patterns of this type must not be confused with the G-banding patterns of higher vertebrates which reveal an additional chromosome segmentation beyond that due to constitutive heterochromatin. The absence of G-bands in plants is explained as follows: 1) Plant chromosomes in metaphase contain much more DNA than G-banding vertebrate chromosomes of comparable length. At such a high degree of contraction vertebrate chromosomes too would not show G-bands, simply for optical reasons. 2) The striking correspondence of pachytene chromomeres and mitotic G-bands in higher vertebrates suggests that pachytene chromomeres are G-band equivalents, and that this may also be the case in plants. G-banded vertebrate chromosomes are on the average only 2.3 times shorter in mitosis than in pachytene; the chromomeric pattern therefore still can be shown. In contrast, plant chromosomes are approximately 10 times shorter at mitotic metaphase; their pachytene-like arrangement of chromomeres is therefore no longer demonstrable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Afzal-Rafii, Z.: Recherches sur le genre Salvia en région méditerranéenne & au Proche-Orient. Thèse. Marseille 1975

  • Bennett, M.D.; Smith, J.B.: Nuclear DNA amounts in angiosperms. Phil. Trans. Roy. Soc. (Lond.) B 274, 228–274 (1976)

    Google Scholar 

  • Ernst, H.: Zytogenetische Untersuchungen an Antirrhinum majus L. Z. Bot. 34, 81–111 (1939)

    Google Scholar 

  • Ernst, H.: Zytogenetische Untersuchungen an haploiden Pflanzen von Antirrhinum majus L. I. Die Meiosis. Z. Bot. 35, 161–190 (1940)

    Google Scholar 

  • Greilhuber, J.: Heterogeneity of heterochromatin in plants: Comparison of Hy- and C-bands in Vicia faba. Plant Syst. Evol. 124, 139–156 (1975)

    Google Scholar 

  • Heitz, E.: Die Herkunft der Chromocentren. Planta 18, 571–636 (1932)

    Google Scholar 

  • Heneen, W.K.: Chromosome morphology in inbred rye. Hereditas 48, 182–200 (1962)

    Google Scholar 

  • Lima-de-Faria, A.: Chromomere analysis of the chromosome complement of rye. Chromosoma 5, 1–68 (1952)

    Google Scholar 

  • Lima-de-Faria, A.: Chromosome gradient and chromosome field in Agapanthus. Chromosoma 6, 330–370 (1954)

    Google Scholar 

  • Lima-de-Faria, A.: The relation between chromomeres, replicons, operons, transcription units, genes, viruses and palindromes. Hereditas 81, 249–284 (1975)

    Google Scholar 

  • Lima-de-Faria, A.; Sarvella, P.; Morris, R.: Different chromomere numbers at meiosis and mitosis in Ornithogalum. Hereditas 45, 467–480 (1959)

    Google Scholar 

  • Lima-de-Faria, A.; Sarvella, P.: Variation of the chromosome phenotype in Zea, Solanum and Salvia. Chromosoma 13, 300–314 (1962)

    Google Scholar 

  • Lima-de-Faria, A.; Daskaloff, S.; Enell, A.: Amplification of ribosomal DNA in Achaeta. I. The number of chromomeres involved in the amplification process. Hereditas 73, 99–118 (1973a)

    Google Scholar 

  • Lima-de-Faria, A.; Gustafsson, T.; Jaworska, H.: Amplification of ribosomal DNA in Achaeta. II. The number of nucleotide pairs of the chromosomes and chromomeres involved in amplification. Hereditas 73, 119–142 (1973b)

    Google Scholar 

  • Luciani, J.M.; Morazzani, M.-R.; Stahl, A.: Identification of pachytene bivalents in human male meiosis using G-banding technique. Chromosoma 52, 275–282 (1975)

    Google Scholar 

  • Nagl, W.: Zellkern und Zellzyklen. Stuttgart: Verlag Eugen Ulmer 1976

    Google Scholar 

  • Okada, T.A.; Comings, D.E.: Mechanisms of chromosome banding. III. Similarity between G-bands of mitotic chromosomes and chromomeres of meiotic chromosomes. Chromosoma 48, 65–71 (1974)

    Google Scholar 

  • Schnedl, W.: Analysis of the human karyotype using a reassociation technique. Chromosoma 34, 448–454 (1971)

    Google Scholar 

  • Schweizer, D.: Vergleichende Untersuchungen zur Längsdifferenzierung der Chromosomen von Vicia faba L. Verhandl. Naturf. Ges. Basel 83, 1–75 (1973)

    Google Scholar 

  • Schweizer, D.: Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58, 307–324 (1976)

    Google Scholar 

  • Sharma, A.K.; Mukhopadhyay, S.: Chromosome study in Agapanthus and the phylogeny of its species. Caryologia 16, 127–137 (1963)

    Google Scholar 

  • Sumner, A.T.: Banding as a level of chromosome organization. In: Current Chromosome Research (eds. Jones, K.; Brandham, P.E.), pp. 17–22. Amsterdam: Elsevier/North-Holland Biomedical Press 1976

    Google Scholar 

  • Webb, G.C.: Chromosome organisation in the Australian plague locust, Chortoicetes termini fera. 1. Banding relationships of the normal and super-numerary chromosomes. Chromosoma 55, 229–246 (1976)

    Google Scholar 

  • Weimarck, A.: Heterochromatin polymorphism in the rye karyotype as detected by the Giemsa C- banding technique. Hereditas 79, 293–300 (1975)

    Google Scholar 

  • Yunis, J.J.: High resolution of human chromosomes. Science 191, 1268–1270 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H.F. Linskens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greilhuber, J. Why plant chromosomes do not show G-bands. Theoret. Appl. Genetics 50, 121–124 (1977). https://doi.org/10.1007/BF00276805

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276805

Key words

Navigation