Skip to main content
Log in

A path independent integral for computing stress intensities for V-notched cracks in a bi-material

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The complex potential method of England is used to formulate the eigenvalue problem for a V-notched crack in a bi-material. The reciprocal work contour integral method of Stern is then extended to yield stress intensities for that configuration. The algorithm was tested on two problems of known solution and was found to be computationally stable and insensitive to finite element idealization error.

Résumé

On utilise la méthode des potentiels complexes de England pour formuler un problème d'eigen-value dans le cas d'une fissure à fond d'entaille en vé dans un bi-matériau. Pour une telle configuration, on procède ensuite à une extension de la méthode de Stern d'intégration sur un contour du travail réciproque jusqu'aux extrémités de contraintes correspondant à plasticité. On teste cet algorithme sur deux problèmes dont la solution est connue par ailleurs, et on trouve qu'il est stable sur le plan des calculs, et insensible à des erreurs par rapport à des éléments finis idéaux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.H. Gallagher, in Proceedings First International Conference on Structural Mechanics in Reactor Technology, Berlin, V. 6, Part L (September 1972) 637–648.

  2. J. Rice and D. Tracey, in Numerical and Computer Methods in Structural Mechanics, S. J. Fenves et al. (eds.) Academic Press, NY (1973) 585–624.

    Google Scholar 

  3. T.H.H. Pian, in Proceedings of World Congress on Finite Element Methods in Structural Mechanics, Bournemouth, England, V. 1 (1975) F1–F39.

  4. R.H. Gallagher, in Proceedings of the First International Conference on Numerical Methods in Fracture Mechanics, University College, Swansea Press (1978) 1–25.

  5. M.L. Williams, Journal of Applied Mechanics 19 (1952) 526–528.

    Google Scholar 

  6. M.L. Williams, Journal of Applied Mechanics 24 (1957) 109–114.

    Google Scholar 

  7. A.H. England, International Journal of Engineering Science 9 (1971) 571–585.

    Article  Google Scholar 

  8. S. Karp and F. Karal, in Communications on Pure and Applied Mathematics XV (1962) 413–421.

  9. B. Gross, “Some Plane Problem Elastostatic Solutions for Plates Having a V-Notch”, PhD thesis, Case Western Research University (1970).

  10. B. Gross and A. Mendelson, International Journal of Fracture Mechanics 8 (1972) 267–276.

    Article  Google Scholar 

  11. K.Y. Lin and P. Tong, International Journal for Numerical Methods in Engineering 15 (1980) 1343–1354.

    Article  Google Scholar 

  12. W.C. Carpenter, International Journal of Fracture 24 (1984) 255–266.

    Article  Google Scholar 

  13. W.C. Carpenter, International Journal of Fracture 27 (1985) 63–74.

    Article  Google Scholar 

  14. M. Stern and M. Soni, in Computational Fracture Mechanics, Proceedings 2nd U.S. National Congress on Pressure Vessels and Piping, San Francisco, CA. (June 23–27, 1975).

  15. M. Stern, E.B. Becker and R.S. Dunham, International Journal of Fracture 12 (1976) 359–368.

    Google Scholar 

  16. M. Stern and M.L. Soni, International Journal of Solids and Structures 12 (1976) 331–337.

    Article  Google Scholar 

  17. C.C. Hong and M. Stern, Journal of Elasticity 8 (1978) 21–34.

    Article  Google Scholar 

  18. M. Stern, Journal of Elasticity 9 (1979) 91–95.

    Article  Google Scholar 

  19. W.C. Carpenter, International Journal of Fracture 24 (1984) 45–58.

    Article  Google Scholar 

  20. W.C. Carpenter, International Journal of Fracture 26 (1984) 201–214.

    Article  Google Scholar 

  21. G.B. Sinclair, M. Okajima and J.H. Griffin, International Journal for Numerical Methods in Engineering 20 (1984) 999–1008.

    Article  Google Scholar 

  22. M.L. Williams, Bulletin of the Seismological Society of America 49, No. 2 (1959) 199–204.

    Google Scholar 

  23. F. Erdogan, Journal of Applied Mechanics 30 (1963) 232–236.

    Google Scholar 

  24. A.H. England, Journal of Applied Mechanics 32 (1965) 400–403.

    Google Scholar 

  25. A.R. Zak and M.L. Williams, Journal of Applied Mechanics 30 (1963) 142–143.

    Google Scholar 

  26. T.C. Ting and P.H. Hoang, International Journal of Solids and Structures 20, No. 5 (1984) 439–454.

    Article  Google Scholar 

  27. F. Erdogan, Journal of Applied Mechanics 32 (1965) 403–410.

    Google Scholar 

  28. J.R. Rice and G.C. Sih, Journal of Applied Mechanics 32 (1965) 418–423.

    Google Scholar 

  29. D.N. Fenner, International Journal of Fracture 12, No. 5 (1976) 705–721.

    Google Scholar 

  30. K.Y. Lin and J.W. Mar, International Journal of Fracture 12, No. 4 (1976) 521–531.

    Google Scholar 

  31. J.F. Yau and S.S. Wang, Engineering Fracture Mechanics 20, No. 3 (1984) 423–432.

    Article  Google Scholar 

  32. D.B. Bogy, Journal of Applied Mechanics 35 (1968) 460–466.

    Google Scholar 

  33. D.B. Bogy, Journal of Applied Mechanics 38 (1971) 377–386.

    Article  Google Scholar 

  34. D.B. Bogy, Journal of Applied Mechanics 38 (1971) 911–918.

    Article  Google Scholar 

  35. D.B. Bogy, International Journal of Solids and Structures 6 (1970) 1287–1313.

    Article  Google Scholar 

  36. D.B. Bogy and K.C. Wang, International Journal of Solids and Structures 7 (1971) 993–1005.

    Article  Google Scholar 

  37. V.L. Hein and F. Erdogan, International Journal of Fracture Mechanics 7, No. 3 (1971) 317–330.

    Article  Google Scholar 

  38. J. Dundurs, Journal of Composite Materials 1 (1967) 310–322.

    Google Scholar 

  39. J. Dundurs, Discussion of [32], Journal of Applied Mechanics 36 (1969) 650–652.

    Google Scholar 

  40. J. Dunders and M.S. Lee, Journal of Elasticity 2 (1972) 109–112.

    Article  Google Scholar 

  41. J. Dundurs, in The Mechanics of the Contact Between Deformable Bodies, A.D. Pater and J.J. Kalker (eds.) Delft University Press (1975) 54–66.

  42. M. Comninou and J. Dundurs, Journal of Applied Mechanics 46 (1979) 97–100.

    Article  Google Scholar 

  43. J.P. Dempsey, Journal of Elasticity 11 (1981) 1–10.

    Article  Google Scholar 

  44. J.P. Dempsey, Stress Singularities of the Composite Wedge, PhD dissertation, University of Auckland, New Zealand (1978).

  45. J.P. Dempsey and G.B. Sinclair, Journal of Elasticity 9 (1979) 373–391.

    Article  Google Scholar 

  46. J.P. Dempsey and G.B. Sinclair, Journal of Elasticity 11 (1981) 317–327.

    Article  Google Scholar 

  47. P.A. Gradin and H.L. Groth, in Proceedings of the Third International Conference on Numerical Methods in Fracture Mechanics, Pineridge Press, Swansea (1984).

    Google Scholar 

  48. H.L. Groth, in Proceedings of the International Adhesion Conference, University of Nottingham (1984).

  49. ANSYS, Engineering Analysis System, Swanson Analysis System, Inc., Houston, Penn.

  50. D. Young and R. Gregory, A Survey of Numerical Mathematics, V. 1, Addison-Wesley, Reading, Mass (1972) 136–145.

    Google Scholar 

  51. IMSL Reference Manual, IMSL Inc., Houston, Texas.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpenter, W.C., Byers, C. A path independent integral for computing stress intensities for V-notched cracks in a bi-material. Int J Fract 35, 245–268 (1987). https://doi.org/10.1007/BF00276356

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276356

Keywords

Navigation