Skip to main content
Log in

Maleylacetate reductase of Pseudomonas sp. strain B13: dechlorination of chloromaleylacetates, metabolites in the degradation of chloroaromatic compounds

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The maleylacetate reductase of 3-chlorobenzoate-grown cells of Pseudomonas sp. strain B13 has been purified 50-fold. The enzyme converted 2-chloromaleylacetate to 3-oxoadipate with temporary occurrence of maleylacetate; 1 mol of chloride was eliminated during the conversion of 1 mol of 2-chloro- and 2,3-dichloromaleylacetate; 2 mol of NADH were consumed per mol of 2-chloro- and 2,3-dichloromaleylacetate while only 1 mol was necessary to catalyze the conversion of maleylacetate or 2-methylmaleylacetate. The maleylacetate reductase failed to use fumarylacetate as a substrate. The role of the enzyme in the chloroaromatics degradation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bollag J-M, Helling CS, Alexander M (1968a) 2,4-d Metabolism. Enzymatic hydroxylation of chlorinated phenols. J Agric Food Chem 16: 826–828

    Google Scholar 

  • Bollag J-M, Briggs GG, Dawson JE, Alexander M (1968b) 2,4-d Metabolism: enzymatic degradation of chlorocatechols. J Agric Food Chem 16: 829–833

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Article  CAS  PubMed  Google Scholar 

  • Brinkmann U, Reineke W (1992) Degradation of chlorotoluenes by in vivo constructed hybrid strains: problems of enzyme specificity, induction and prevention of meta-pathway. FEMS Microbiol Lett 96: 81–88

    Google Scholar 

  • Buswell JA, Eriksson KE (1979) Aromatic ring cleavage by the white-rot fungus Sporotrichum pulverulentum. FEBS Lett 104: 258–260

    Google Scholar 

  • Chapman PJ (1979) Degradation mechanisms. In: Bourquin AW, Pritchard PH (eds) Microbial degradation of pollutants in marine environments. EPA-600/9–79–012 Environ Prot Agency, Gulf Breeze, Fla., USA, pp 28–66

    Google Scholar 

  • Chapman PJ, Ribbons DW (1976) Metabolism of resorcinylic compounds by bacteria: alternative pathways for resorcinol catabolism in Pseudomonas putida. J Bacteriol 125: 985–998

    Google Scholar 

  • Chatterjee DK, Kellog ST, Hamada S, Chakrabarty AM (1981) Plasmid specifying total degradation of 3-chlorobenzoate by a modified ortho-pathway. J Bacteriol 146: 639–646

    Google Scholar 

  • DeBont JAM, Vorage MJAW, Hartmans S, Tweel WJJvan den (1986) Microbial degradation of 1,3-dichlorobenzene. Appl Environ Microbiol 52: 677–680

    Google Scholar 

  • Ditzelmüller G, Loidl M, Streichsbier F (1989) Isolation and characterization of a 2,4-dichlorophenoxyacetic acid-degrading soil bacterium. Appl Microbiol Biotechnol 31: 93–96

    Google Scholar 

  • Dorn E, Hellwig M, Reineke W, Knackmuss H-J (1974) Isolation and characterization of 3-chlorobenzoate degrading pseudomonad. Arch Microbiol 99: 61–70

    Google Scholar 

  • Dorn E, Knackmuss H-J (1978a) Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad. Biochem J 174: 73–84

    Google Scholar 

  • Dorn E, Knackmuss H-J (1978b) Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. Biochem J 174: 85–94

    Google Scholar 

  • Duxbury JM, Tiedje JM, Alexander M, Dawson JE (1970) 2,4-d Metabolism: enzymatic conversion of chloromaleylacetic acid to succinic acid. J Agric Food Chem 18: 199–201

    Google Scholar 

  • Eisner U, Elvidge JA, Linstead RP (1951) Unsaturated lactones and related substances. (V) Dihydro-β-ketomuconic acid and carboxy-lactones of the protoanemonin type. Chem Soc 1501–1512

  • Evans WC, Smith BSW, Fernley HN, Davies JI (1971a) Bacterial metabolism of 2,4-dichlorophenoxyacetate. Biochem J 122: 543–551

    Google Scholar 

  • Evans WC, Smith BSW, Moss P, Fernley HN (1971b) Bacterial metabolism of 4-chlorophenoxyacetate. Biochem J 122: 509–517

    Google Scholar 

  • Freier RK (1974) Wasseranalyse. Chemische, physiko-chemische und radio-chemische Untersuchungsverfahren, 2. Aufl. W. de Gruyter, Berlin, pp 45–46

    Google Scholar 

  • Gaal AB, Neujahr HY (1979) Metabolism of phenol and resorcinol in Trichosporon cutaneum. J Bacteriol 137: 13–21

    Google Scholar 

  • Haigler BE, Nishino SF, Spain JC (1988) Degradation of 1,2-dichlorobenzene by a Pseudomonas sp. Appl. Environ Microbiol 54: 294–301

    Google Scholar 

  • Haigler BE, Spain J (1989) Degradation of p-chlorotoluene by a mutant of Pseudomonas sp. strain JS6. Appl Environ Microbiol 55: 372–379

    Google Scholar 

  • Hartmann J, Reineke W, Knackmuss H-J (1979) Metabolism of 3-chloro-, 4-chloro-, and 3,5-dichlorobenzoate by a pseudomonad. Appl Environ Microbiol 37: 421–428

    Google Scholar 

  • Hartmann J, Engelberts K, Nordhaus B, Schmidt E, Reineke W (1989) Degradation of 2-chlorobenzoate by in vivo constructed hybrid pseudomonads. FEMS Microbiol Lett 61: 17–22

    Google Scholar 

  • Havel J, Reineke W (1991) Total degradation of various chlorobiphenyls by cocultures and in vivo constructed pseudomonads. FEMS Microbiol Lett 78: 163–170

    Google Scholar 

  • Holding AJ, Collee JG (1971) The decomposition of simple carbohydrates, organic acids and some other compounds. In: Norris JR, Ribbons DW (eds) Methods in microbiology. Academic Press, London, 6a, pp 3–12

    Google Scholar 

  • Kaschabek SR (1990) Untersuchungen zur Dechlorierung von Chlormaleylacetaten in Pseudomonas sp. Stamm B13. Diploma Thesis, University of Wuppertal, FRG

  • Latorre J, Reineke W, Knackmuss H-J (1984) Microbial metabolism of chloroanilines: enhanced evolution by natural genetic exchange. Arch Microbiol 140: 159–165

    Google Scholar 

  • Loidl M, Hinteregger C, Ditzelmüller G, Ferschl A, Streichsbier F (1990) Degradation of aniline and monochlorinated anilines by soil-born Pseudomonas acidovorans strains. Arch Microbiol 155: 56–61

    Google Scholar 

  • Mokross H, Schmidt E, Reineke W (1990) Degradation of 3-chlorobiphenyl by in vivo constructed hybrid pseudomonads. FEMS Microbiol Lett 71: 179–186

    Google Scholar 

  • Oltmanns RH, Rast HG, Reineke W (1988) Degradation of 1,4-dichlorobenzene by enriched and constructed bacteria. Appl Microbiol Biotechnol 28: 609–616

    Google Scholar 

  • Reineke W, Knackmuss H-J (1979) Construction of haloaromatics utilising bacteria. Nature 277: 385–386

    Google Scholar 

  • Reineke W, Knackmuss H-J (1980) Hybrid pathway for chlorobenzoate metabolism in Pseudomonas sp. B13 derivatives. J Bacteriol 142: 467–473

    Google Scholar 

  • Reineke W, Knackmuss H-J (1984) Microbial metabolism of haloaromatics: isolation and properties of a chlorobenzene-degrading bacterium. Appl Environ Microbiol 47: 395–402

    Google Scholar 

  • Sander P, Wittich R-M, Fortnagel P, Wilkes H, Francke W (1991) Degradation of 1,2,4-trichloro- and 1,2,4,5-tetrachlorobenzene by Pseudomonas strains. Appl Environ Microbiol 57: 1430–1440

    Google Scholar 

  • Schlömann M, Schmidt E, Knackmuss H-J (1990) Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria. J Bacteriol 172: 5112–5118

    Google Scholar 

  • Schmidt E, Knackmuss H-J (1980) Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid. Biochem J 192: 339–347

    Google Scholar 

  • Schmidt E, Remberg G, Knackmuss H-J (1980) Chemical structure and biodegradability of halogenated aromatic compounds. Halogenated muconic acids as intermediates. Biochem J 192: 331–337

    Google Scholar 

  • Schraa G, Boone ML, Jetten MSM, Neerven ARWvan, Colberg PJ, Zehnder AJB (1986) Degradaton of 1,4-dichlorobenzene by Alcaligenes sp. strain A175. Appl Environ Microbiol 52: 1374–1381

    Google Scholar 

  • Schwien U, Schmidt E (1982) Improved degradation of monochlorophenols by constructed strains. Appl Environ Microbiol 44: 33–39

    Google Scholar 

  • Schwien U, Schmidt E, Knackmuss H-J, Reineke W (1988) Degradation of chlorosubstituted aromatic compounds by Pseudomonas sp. strain B13: fate of 3,5-dichlorocatechol. Arch Microbiol 150: 78–84

    Google Scholar 

  • Sharpee KW, Duxbury JM, Alexander M (1973) 2,4-Dichlorophenoxyacetate metabolism by Arthrobacter sp.: accumulation of a chlorobutenolide. Appl Microbiol 26: 445–447

    Google Scholar 

  • Spain JC, Nishino SF (1987) Degradation of 1,4-dichlorobenzene by a Pseudomonas sp. Appl Environ Microbiol 53: 1010–1019

    Google Scholar 

  • Sparnins VL, Burbee DG, Dagley S (1979) Catabolism of l-tyrosine in Trichosporon cutaneum. J Bacteriol 138: 425–430

    Google Scholar 

  • Tiedje JM, Alexander M (1969) Enzymatic cleavage of the ether bond of 2,4-dichlorophenoxyacetate. J Agric Food Chem 17: 1080–1084

    Google Scholar 

  • Tiedje JM, Duxbury JM, Alexander M, Dawson JE (1969) 2,4-d Metabolism: pathway of degradation of chlorocatechols by Arthrobacter sp. J Agric Food Chem 17: 1021–1026

    Google Scholar 

  • Van derMeer JR, Roelofsen W, Schraa G, Zehnder AJB (1988) Degradation of low concentrations of dichlorobenzenes and 1,2,4-trichlorobenzene by Pseudomonas sp. strain P51 in nonsterile soil columns. FEMS Microbiol Ecol 45: 333–341

    Google Scholar 

  • Van derMeer JR, Neerven ARWvan, Vries EJde, Vos WMde, Zehnder AJB (1991) Cloning and characterization of plasmidencoded genes for the degradation of 1,2-dichloro-, 1,4-dichloro-, and 1,2,4-trichlorobenzene of Pseudomonas sp. strain P51. J Bacteriol 173: 6–15

    Google Scholar 

  • You IS, Bartha R (1982) Metabolism of 3,4-dichloroaniline by Pseudomonas putida. J Agric Food Chem 30: 274–277

    Google Scholar 

  • Zeyer J, Kearney PC (1982) Microbial degradation of para-chloroaniline as sole carbon and nitrogen source. Pest Biochem Physiol 17: 215–223

    Google Scholar 

  • Zeyer J, Wasserfallen A, Timmis KN (1985) Microbial mineralization of ring-substituted anilines through an ortho-cleavage pathway. Appl Environ Microbiol 50: 447–453

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaschabek, S.R., Reineke, W. Maleylacetate reductase of Pseudomonas sp. strain B13: dechlorination of chloromaleylacetates, metabolites in the degradation of chloroaromatic compounds. Arch. Microbiol. 158, 412–417 (1992). https://doi.org/10.1007/BF00276301

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276301

Key words

Navigation