Skip to main content
Log in

Spatial patterns in coupled biochemical oscillators

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Summary

The effects of diffusion on the dynamics of biochemical oscillators are investigated for general kinetic mechanisms and for a simplified model of glycolysis. When diffusion is sufficiently rapid a population of oscillators relaxes to a globally-synchronized oscillation, but when diffusion of one or more species is slow enough, the synchronized oscillation can be unstable and a nonuniform steady state or an asynchronous oscillation can arise. The significance of these results vis-a-vis models of contact inhibition and zonation patterns is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldridge, J.: Short-range intercellular communication, biochemical oscillations, and circadian rhythms. In: Hndbk. of Eng. in Med. and Biol. (R. Fleming, ed.) Cleveland: Chemical Rubber Co. 1976

    Google Scholar 

  2. Auchmuty, J. F. G., Nicholis, G.: Bifurcation analysis of nonlinear reaction-diffusion equations. Bull. Math. Biology 37, 323–365 (1975)

    Google Scholar 

  3. Auchmuty, J. F. G.: Positivity for elliptic and parabolic systems. Proc. Roy. Soc. Edin. (To appear, 1977)

  4. Burton, A. C., Canham, P. B.: The behavior of coupled biochemical oscillators as a model of contact inhibition of cellular division. J. Theor. Biol. 39, 555–580 (1973)

    Google Scholar 

  5. Chueh, K. N., Conley, C. C., Smoller, J. A.: Positively invariant regions for systems of nonlinear diffusion equations. Ind. Univ. Math. Jour. 26, 373–392 (1977)

    Google Scholar 

  6. Conway, E., Hoff, D., Smoller, J.: Large time behavior of solutions of systems of nonlinear reaction diffusion equations, to appear in SIAM J. Appl. Math. (1977)

  7. Conway, E. D., Smoller, J. A.: A comparison theorem for systems of reaction-diffusion equations (preprint, 1977)

  8. Eidel'man, S. D.: Parabolic Systems. Amsterdam: North-Holland 1969

    Google Scholar 

  9. Friedman, A.: Partial Differential Equations. New York: Holt, Rinehart and Winston 1969

    Google Scholar 

  10. Georgakis, C., Sani, R. L.: On the stability of the steady state in systems of coupled diffusion and reaction. Arch. Rat. Mech. and Anal. 52, 266–296 (1973)

    Google Scholar 

  11. Gibbs, R. G., Murray, J. D.: On models of oscillations in the glycolytic pathways (preprint, 1977).

  12. Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik 12, 30–39 (1972)

    Google Scholar 

  13. Goldbeter, A., Nicolis, G.: An allosteric enzyme model with positive feedback applied to glycolytic oscillations, in Prog. Theor. Biol. 4 (R. Rosen and F. Snell, eds.) New York: Academic Press 1976

    Google Scholar 

  14. Hartman, P.: Ordinary Differential Equations. Baltimore: P. Hartman 1973

    Google Scholar 

  15. Hess, B., Boiteux, A.: Oscillatory phenomena in biochemistry. Ann. Rev. Biochem. 40, 237–258 (1971)

    Google Scholar 

  16. Higgins, J.: Oscillatory reactions. Ind. and Eng. Chem. 59, 19–62 (1967)

    Google Scholar 

  17. Hopf, E.: Abzweigung einer periodischen Lösung von einer stationären Lösung eines Differential Systems. Ber. Math.-Phys. Klasse Sächs. Akad. Wiss. Leipzig. 94, 3–22 (1942)

    Google Scholar 

  18. Keener, J. P.: Secondary bifurcation in nonlinear diffusion reaction equations. Studies Appl. Math. 55, 187–211 (1976)

    Google Scholar 

  19. Kevorkian, J.: The two variable expansion procedure for the approximate solution of certain nonlinear differential equations, in Space Mathematics, part 3: Lectures in Applied Math. 7, Providence; Amer. Math. Soc. 1966

    Google Scholar 

  20. Kraeplein, G., Franck, G.: Self-synchronization in yeast and other fungi. Int. J. Chronobiology 1, 163–172 (1973)

    Google Scholar 

  21. Marsden, J. E., McCracken, M.: The Hopf Bifurcation and its Applications. New York: Springer 1976

    Google Scholar 

  22. Matkowsky, B. J.: A simple nonlinear dynamic stability problem. Bull. Amer. Math. Soc., 76, 620–625 (1970)

    Google Scholar 

  23. Meinhardt, H.: A model of pattern formation in insect embryogenesis. J. Cell. Sci. 23, 117–139 (1977)

    Google Scholar 

  24. Morse, P. M., Feshbach, H.: Methods of Theoretical Physics. New York: McGraw-Hill 1953

    Google Scholar 

  25. Othmer, H. G., Scriven, L. E.: Interactions of reaction and diffusion in open systems. Ind. & Eng. Chem. Fund. 8, 302–313 (1969)

    Google Scholar 

  26. Othmer, H. G., Scriven, L. E.: Instability and dynamic pattern in cellular networks. J. Theor. Biol. 32, 507–537 (1971)

    Google Scholar 

  27. Othmer, H. G.: Temporal oscillations in chemically-reacting systems, in: Proc. IEEE Int. Conf. on Cybernetics and Society. Washington, D.C.: IEEE 1976

    Google Scholar 

  28. Othmer, H. G.: On the significance of finite propagation speeds in multicomponent reacting systems. J. Chem. Phys. 64, 460–470 (1976)b

    Google Scholar 

  29. Othmer, H. G.: Current problems in pattern formation, in: Lectures on Mathematics in the Life Sciences, (S. A. Levin, ed.) Providence: Amer. Math. Soc. 1977

    Google Scholar 

  30. Othmer, H. G.; Aldridge, J.: The effects of cell density and metabolite flux on cellular dynamics, to appear in J. Math. Biology (1978)

  31. Pavlidis, T.: Biological Oscillators: Their Mathematical Analysis. New York: Academic Press 1973

    Google Scholar 

  32. Poore, A.: On the theory and application of Hopf-Friedrichs bifurcation theory. Arch. Rat. Mech. Anal. 60, 371–393 (1976)

    Google Scholar 

  33. Pye, E. K.: Periodicities in intermediary metabolism, in: Symp. on Biochronometry. Washington, D.C.: Nat. Acad. Sci. Press 1971

    Google Scholar 

  34. Sel'kov, E. E.: Self-oscillations in glycolysis. A simple kinetic model. Eur. J. Biochem. 4, 79–86 (1968)

    Google Scholar 

  35. Smale, S.: A mathematical model of two cells via Turing's equations, in: Lectures on Mathematics in the Life Sciences 7 (J. Cowan, ed.) Providence: Amer. Math. Soc. 1975

    Google Scholar 

  36. Torre, V.: Synchronization of non-linear biochemical oscillators coupled by diffusion. Biol. Cybern. 17, 137–144 (1975)

    Google Scholar 

  37. Tyson, J., Kauffman, S.: Control of mitosis by a continuous biochemical oscillation. J. Math. Biology 1, 289 (1975)

    Google Scholar 

  38. Walter, W.: Differential and Integral Inequalities. New York: Springer 1970

    Google Scholar 

  39. Weinberger, H. F.: Invariant sets for weakly coupled parabolic and elliptic systems. Rend. di Mat. 8, 295–310 (1975)

    Google Scholar 

  40. Winfree, A. T.: Polymorphic pattern formation in the fungus nectria. J. Theor. Biol. 38, 363–382 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashkenazi, M., Othmer, H.G. Spatial patterns in coupled biochemical oscillators. J. Math. Biology 5, 305–350 (1977). https://doi.org/10.1007/BF00276105

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276105

Key words

Navigation