Skip to main content
Log in

The use of specialised transducing phages in the amplification of enzyme production

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Two types of λtrp phages have been used as model systems to investigate ways of optimising the expression of bacterial genes from transducing phage genomes.

Excellent yields of trp enzymes were achieved by infecting a trpR host with Q or Q Q S derivatives of λtrpAM1, which expresses its trp genese exclusively from the trp promoter. The five trp geneproducts constituted more than 50% of the total soluble protein of infected cells under these conditions, and an even higher proportion of the protein synthesized after infection. In a trpR + host, phage DNA replication was easily able to override tryptophan-mediated repression by titration of the trp repressor protein. N derivatives of λtrp phages carrying the trp promoter were equally productive, while having the advantage of being much simpler to construct and propagate.

λtrp phages lacking the trp promoter were used to investigate ways of optimising gene expression initiated at the phage promoter, PL. Though very powerful, the latter promoter is more difficult to harness then the trp promoter. Derepression of transcription from PL by the use of cro mutations is accompanied by poor replication of transducing phage DNA. Attempts to circumvent this difficulty using virulent of cro, cll double mutants have not been successful. Nevertheless, cells infected with a λtrp phage expressing its trp genes exclusively from PL made up to 16 per cent of their protein as trp gene-products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adhya, S., Gottesman, M., de Crombrugghe, B.: Release of polarity in Escherichia coli by gene N of phage λ: termination and antitermination of transcription. Proc. nat. Acad. Sci. (Wash.) 71, 2534–2538 (1974)

    Google Scholar 

  • Appleyard, R.K., McGregor, J.F., Baird, K.M.: Mutations to extended host range and the occurrence of phenotypic mixing in the temperate coliphage λ. Virology 2, 565–574 (1956)

    Google Scholar 

  • Borck, K., Beggs, J.D., Brammar, W.J., Hopkins, A.S., Murray, N.E.: The construction in vitro of transducing derivatives of phage lambda. Molec. gen. Genet., 146, 199–207 (1976)

    Google Scholar 

  • Brammar, W.J., Murray, N.E., Winton, S.: Restriction of λtrp bacteriophage by Escherichia coli K. J. molec. Biol. 90, 633–647 (1974)

    Google Scholar 

  • Burdon, M.G.: A potential method for selecting genetic deletions in E. coli. Molec. gen. Genet. 108, 288–290 (1970)

    Google Scholar 

  • Cameron, J.R., Panasenko, S.M., Lehman, I.R., Davis, R.W.: In vitro construction of bacteriophage λ carrying segments of the Escherichia coli chromosome: selection of hybrids containing the gene for DNA ligase. Proc. nat. Acad. Sci. (Wash.) 72, 3416–3420 (1975)

    Google Scholar 

  • Campbell, A.: Transduction and segregation in Escherichia coli K12. Virology 4, 366–384 (1957)

    Google Scholar 

  • Campbell, A.: Sensitive mutants of bacteriophage λ. Virology 14, 22–32 (1961)

    Google Scholar 

  • Campbell, A., Del-Campillo-Campbell, A.: Mutant of lambda bacteriophage producing a thermolabile endolysin. J. Bact. 85, 1202–1207 (1963)

    Google Scholar 

  • Court, D., Campbell, A.: Gene regulation in N mutants of bacteriophage λ. J. Virol 9, 938–945 (1972)

    Google Scholar 

  • Court, D., Sato, K.: Studies of novel transducing variants of lambda: dispensability of genes N and Q. Virology 39, 348–352 (1969)

    Google Scholar 

  • Couturier, M., Dambly, C., Thomas, R.: Control of development temperate bacteriophages. V. Sequential activation of the viral functions. Molec. gen. Genet. 120, 231–252 (1973)

    Google Scholar 

  • Creighton, T.E., Yanofsky, C.: Indole-3-glycerol phosphate synthetase of Escherichia coli, an enzyme of the tryptophan operon. J. biol. Chem. 241, 4616–4624 (1966)

    Google Scholar 

  • Davison, J., Brammar, W.J., Brunel, F.: Quantitative aspects of gene expression in a λ-trp fusion operon. Molec. gen. Genet. 130, 9–20 (1974)

    Google Scholar 

  • Deeb, S.S., Okamoto, K., Hall, B.D.: Isolation and characterisation of non-defective transducing elements of bacteriophage ϕ80. Virology 31, 289–295 (1967)

    Google Scholar 

  • Dove, W.F.: Action of the lambda chromosome. I. Control of functions late in bacteriophage development. J. molec. Biol. 19, 187–201 (1966)

    Google Scholar 

  • Echols, H., Green, L., Oppenheim, A.B., Oppenheim, A., Honigman, A.: Role of the cro gene in bacteriophage λ development. J. molec. Biol. 80, 203–216 (1973)

    Google Scholar 

  • Enquist, L.W., Skalka, A.: Replication of bacteriophage λ DNA dependent on the function of host and viral genes. I. Interaction of red, gam and rec. J. molec. Biol. 75, 185–212 (1973)

    Google Scholar 

  • Franklin, N.C.: The N operon of lambda: extent and regulation as observed in fusions to the tryptophan operon of Eschrichia coli. In: The bacteriophage lambda (Hershey, A.D., ed.), pp. 621–638. New York: Cold Spring Harbor Laboratories 1971

    Google Scholar 

  • Franklin, N.C.: Altered reading of genetic signals fused to the N operon of bacteriophage λ: Genetic evidence for modification of polymerase by the protein product of the N gene. J. molec. Biol. 89, 33–48 (1974)

    Google Scholar 

  • Franklin, N.C., Dove, W.: Genetic evidence for restriction targets in the DNA of phages λ and ϕ80. Genet. Res. 14, 151–157 (1969)

    Google Scholar 

  • Goldberg, A.R., Howe, M.: New mutations in the S cistron of bacteriophage λ affecting host cell lysis. Virology 38, 200–202 (1969)

    Google Scholar 

  • Gottesman, S., Beckwith, J.R.: Directed transposition of the arabinose operon: A technique for the isolation of specialised transducing bacteriophages for any Escherichia coli gene. J. Molec. Biol. 44, 117–127 (1969)

    Google Scholar 

  • Harris, A.W., Mount, D.W.A., Fuerst, C.R., Siminovitch, L.: Mutations in bacteriophage λ affecting host cell lysis. Virology 32, 553–569 (1967)

    Google Scholar 

  • Henderson, E.J., Zalkin, H., Hwang, L.H.: The anthranilate synthetase — anthranilate 5-phosphoribosyl-pyrophosphate phosphoribosyltransferase aggregate. J. biol. Chem. 245, 1424–1431 (1970)

    Google Scholar 

  • Henning, U., Helinski, D.R., Chao, F.C., Yanofsky, C.: The A protein of the tryptophan synthetase of Escherichia coli. J. biol. Chem. 237, 1523–1530 (1962)

    Google Scholar 

  • Hopkins, A.S., Murray, N.E., Brammar, W.J.: Characterisation of λtrp-transducing phages made in vitro. J. molec. Biol., in press (1976)

  • Ito, J., Cox, E.C., Yanofsky, C.: Anthranilate synthetase, an enzyme specified by the tryptophan operon of Escherichia coli: purification and characterisation of component I. J. Bact. 97, 725–733 (1969)

    Google Scholar 

  • Jacob, F., Wollman, E.L.: Étude génétique d'un bactériophage tempéré d'Escherichia coli. I. Les système génétique du bactériophage λ. Ann. Inst. Pasteur 87, 653–674 (1954)

    Google Scholar 

  • Kellenberger, G., Zichichi, M.L., Weigle, J.J.: Exchange of DNA in the recombination of bacteriophage λ. Proc. nat. Acad. Sci. (Wash.) 47, 869–878 (1961)

    Google Scholar 

  • Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.) 227, 680–685 (1970)

    Google Scholar 

  • Lennox, E.S.: Transduction of linked characters of the host of bacteriophage P1. Virology 1, 190–206 (1955)

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randal, R.J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  • Morse, D.E., Yanofsky, C.: Amber mutants of the trpR regulatory gene. J. molec. Biol. 44, 185–193 (1969)

    Google Scholar 

  • Muller-Hill B., Crapo, L., Gilbert, W.: Mutants that make more lac repressor. Proc. nat. Acad. Sci. (Wash.) 59, 1259–1264 (1968)

    Google Scholar 

  • Murray, K., Murray, N.E.: Phage lambda receptor chromosomes for DNA fragments made with restriction endonuclease III of Haemophilus influenzae and restriction andonuclease I of Escherichia coli. J. molec. Biol. 98, 551–564 (1975)

    Google Scholar 

  • Murray, N.E., Brammar, W.J.: The trpE gene of Escherichia coli K contains a recognition sequence for the K-restriction system. J. molec. Biol. 77, 615–624 (1973)

    Google Scholar 

  • Murray, N.E., Manduca de Ritis, P., Foster, L.A.: DNA targets for the Escherichia coli K restriction system analysed genetically in recombinants between phages phi 80 and lambda. Molec. gen. Genet. 120, 261–281 (1973)

    Google Scholar 

  • Murray, N.E., Murray, K.: Manipulation of restriction targets in phage λ to form receptor chromosomes for DNA fragments. Nature (Lond.) 251, 476–481 (1974)

    Google Scholar 

  • Ogawa, T., Tomizawa, J.: Replication of bacteriophage DNA. I. Replication of DNA of lambda phage defective in early functions. J. molec. Biol. 38, 217–225 (1968)

    Google Scholar 

  • Press, R., Glansdorff, N., Miner, P., de Vries, J., Kadner, R., Maas, W.K.: Isolation of transducing particles of ϕ80 bacteriophage that carry different regions of the Escherichia coli genome. Proc. nat. Acad. Sci. (Wash.) 68, 795–798 (1971)

    Google Scholar 

  • Ptashne, M., Hopkins, N.: The operators controlled by the lambda phage repressor. Proc. nat. Acad. Sci. (Wash.) 60, 1282–1287 (1968)

    Google Scholar 

  • Rambach, A., Tiollais, P.: Bacteriophage λ having Eco RI endonuclease sites only in the non-essential region of the genome. Proc. nat. Acad. Sci. (Wash.) 71, 3927–3930 (1974)

    Google Scholar 

  • Sato, K., Matsushiro, A.: The tryptophan operon regulation by phage immunity. J. molec. Biol. 14, 608–610 (1965)

    Google Scholar 

  • Schlief, R., Greenblatt, J., Davis, R.W.: Dual control of arabinose genes on transducing phage λdara. J. molec. Biol. 59, 127–150 (1971)

    Google Scholar 

  • Shimada, K., Weisberg, R.A., Gottesman, M.E.: Prophage lambda at unusual chromosomal locations. I. Location of the secondary attachment sites and the properties of the lysogens. J. molec. Biol. 63, 483–503 (1972)

    Google Scholar 

  • Sly, W.S., Rabideau, K., Kolber, A.: The mechanisms of lambda virulence. II. Regulatory mutations in classical virulence. In: The bacteriophage lambda (Hershey, A.D., ed.), pp 575–588. New York: Cold Spring Harbor Laboratories 1971

    Google Scholar 

  • Spizizen, J.: Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc. nat. Acad. Sci. (Wash.) 44, 1072–1078 (1958)

    Google Scholar 

  • Stacey, K.A., Simson, E.: Improved method for the isolation of thymine-requiring mutants of Escherichia coli. J. Bact. 90, 554–555 (1965)

    Google Scholar 

  • Stevens, W.F., Adhya, S., Szybalski, W.: Origin and bidirectional orientation of DNA replication in coliphage lambda. In: The bacteriophage lambda (Hershey, A.D., ed.), pp. 515–534, New York: Cold Spring Harbor Laboratories 1971

    Google Scholar 

  • Studier, F.W.: Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J. molec. Biol. 79, 237–248 (1973)

    Google Scholar 

  • Thomas, M., Cameron, J.R., Davis, R.W.: Viable molecular hybrids of bacteriophage lambda and eukaryotic DNA. Proc. nat. Acad. Sci. (Wash.) 71, 4579–4583 (1974)

    Google Scholar 

  • Weber, K., Osborn, M.: The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. biol. Chem. 244, 4406–4412 (1969)

    Google Scholar 

  • Wilson, D., Crawford, I.P.: Purification and properties of the B component of Escherichia coli tryptophan synthetase. J. biol. Chem. 240, 4801–4808 (1965)

    Google Scholar 

  • Yanofsky, C., Ito, J.: Nonsense codons and polarity in the tryptophan operon. J. molec. Biol. 21, 313–344 (1966)

    Google Scholar 

  • Zalkin, H., Yanofsky, C., Squires, C.L.: Regulated in vitro synthesis of Escherichia coli tryptophan operon messenger ribunucleic acid and enzymes. J. biol. Chem. 249, 465–476 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B.A. Bridges

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moir, A., Brammar, W.J. The use of specialised transducing phages in the amplification of enzyme production. Molec. Gen. Genet. 149, 87–99 (1976). https://doi.org/10.1007/BF00275963

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00275963

Keywords

Navigation