Skip to main content
Log in

Adapting coincidence scalers and neural modelling studies of vision

  • Published:
Kybernetik Aims and scope Submit manuscript

Summary

Some extensions of the theory of adapting coincidence scaling are presented in the context of neural theory and modelling.

Previously the theory of adapting coincidence scaling has been successfully applied to quite a number of specific problems mainly drawn from psychophysical theories of vision: van de Grind et al. (1970a, b); Koenderink et al. (1970a, b). Here emphasis is on neurophysiological problems and after a brief discussion of the “coding” and “component” problems of neural network modelling and a survey of basic coincidence scaling mechanisms a paradigm for neural encoding is treated in some detail. This paradigm (Fig. 6A) is similar to the neuromimes developed and studied by Harmon (1959, 1961) and Küpfmüller and Jenik (1961) for deterministic input signals. On the basis of the introductory discussion of the coding problem it is assumed that the neural code in the peripheral part of the nervous system that we choose as our hunting ground, viz. the retina, is an average event rate code with a Poisson point process as a carrier. Thus the paradigm for neural encoding is studied for such a stochastic input point process. It is then among other things shown that such a simple encoder can generate a wide variety of multimodal interval distributions for certain choices of its parameters. Next we turn to a classic coincidence model of vision and give extremely accurate simulation results to substitute for the lacking analytic solution of the underlying K-fold coincidence problem.

A shortcoming of this model is analysed in terms of elementary neural operations and it is shown that the problem of specifying a generalized version of the model ties in with the problem of developing models to explain the quantal signals (bumps) observed on the generator potential during intracellular recordings from the eccentric cell of Limulus. A cybernetic principle for “bump” size adaptation is formulated on the basis of the apparent and possibly significant similarity of this adaptation process with the event rate reduction principle embodied in the so called V R-machine (van de Grind et al., 1970a) which is one of our set of adapting coincidence scalers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Adolph, A. R.: Spontaneous slow potential fluctuations in the Limulus photoreceptor. J. gen. Physiol. 48, 297–322 (1964a).

    Google Scholar 

  • Adolph, A. R. A stochastic model of neuron function and its application to subthreshold processes in the Limulus photoreceptor and frog neuromuscular junction. Ph. D. Thesis, Rockefeller Univ. (1964b).

  • Amassian, V. E., Macy, J., Waller, H. J., Leader, H. S., Swift, M.: Transformation of afferent activity at the cuneate nucleus. In: R. W. Gerard and J. W. Duyff (eds.), Information processing in the nervous system (proc. XXII Int. Physiol. Congr. 1962). Int. Congr. ser. No. 49. Amsterdam: Excerpta Medica Foundation 1964.

    Google Scholar 

  • Bayly, E. J.: Spectral analysis of pulse frequency modulation in the nervous system. I.E.E.E. Trans, on B.M.E. 15, 257–265 (1968).

    Google Scholar 

  • Bergeyk, W. A. van: Nomenclature of devices which simulate biological functions. Science 132, 248 (1960).

    Google Scholar 

  • Bishop, P. O., Levick, W. R., Williams, W. O.: Statistical analysis of the dark discharge of lateral geniculate neurons. J. Physiol. (Lond.) 170, 598–612 (1964).

    Google Scholar 

  • Bouman, M. A.: History and present status of quantum theory in vision. In: Sensory communications, ed. W. A. Rosenblith, M.I.T.-Press 1961.

  • — My image of the retina. Quart. Rev. Biophys. 2, 25–64 (1969).

    Google Scholar 

  • — Velden, H. A. van der: The two-quanta explanation of the dependence of the threshold values and visual acuity on the visual angle and the time of observation. J. opt. Soc. Amer. 37, 908–919 (1947).

    Google Scholar 

  • Borsellino, A., Poppele, R. E., Terzuolo, C. A.: Transfer functions of the slowly adapting stretch receptor organ of Crustacea. Cold Spr. Harb. Symp. quant. Biol. 30, 581–586 (1965).

    Google Scholar 

  • Bullock, T. H., Terzuolo, C. A.: Diverse forms of activity in the somata of spontaneous and integrating ganglion cells. J. Physiol. (Lond.) 138, 341–364 (1957).

    Google Scholar 

  • Burns, B. D., Heron, W., Pritchard, R.: Physiological excitation of the visual cortex in cat's unanaesthetized isolated forebrain. J. Neurophysiol. 25, 165–181 (1962).

    Google Scholar 

  • Dallos, P. J., Jones, R. W.: A receptor analog having logarithmic response. I.E.E.E. Trans, on B. M. E. 10, 13–15 (1963).

    Google Scholar 

  • Dietz, K.: Erzeugung multimodaler Intervallverteilungen durch Ausdünnung von Erneuerungsprozessen. Kybernetik 4, 131–136 (1968).

    Google Scholar 

  • Dodge, F. A.: Inhibition and excitation in the Limulus eye. Proc. Int. School of Physics, Enrico Fermi. Processing of Optical Data by Organisms and by Machines, ed. W. Reichardt, New York: Academic Press 1969.

    Google Scholar 

  • — Knight, B. W., Toyoda, J.: Voltage noise in Limulus visual cells. Science 160, 88–90 (1968).

    Google Scholar 

  • — Shapley, R. M., Knight, B. W.: Systems analysis of the Limulus retina. Behav. Sci. 15, 24–36 (1970).

    Google Scholar 

  • Eccles, J. C.: The physiology of nerve cells. London: Oxford Univ. Press 1957.

    Google Scholar 

  • Elteren, Ph. van, Gerrits, H. J. M.: Een wachtprobleem voorkomende by drempelwaardemetingen aan het oog. Statistica Neerlandica 15, 385–401 (1961).

    Google Scholar 

  • Färber, G.: Berechnung und Messung des Informationsflusses der Nervenfaser. Kybernetik 5, 17–29 (1968).

    Google Scholar 

  • Fetz, E. E., Gerstein, G. L.: An RC model for spontaneous activity of single neurons. M.I.T. Q.P.R. 71, 249–257 (1963).

    Google Scholar 

  • Fuortes, M.G.F.: Electric activity of cells of the eye of Limulus. Amer. J. Ophtal. 46, 210–223 (1958).

    Google Scholar 

  • — Initiation of impulses in visual cells of Limulus. J. Physiol. (Lond.) 148, 14–28 (1959).

    Google Scholar 

  • — Mantegazzini, F.: Interpretation of the repetitive firing of nerve cells. J. gen. Physiol. 45, 1163–1179 (1962).

    Google Scholar 

  • — Yeandle, S.: Probability of occurrence of discrete potential waves in the eye of Limulus. J. gen. Physiol. 47, 443–464 (1964).

    Google Scholar 

  • Geisler, C. D., Goldberg, J. M.: A stochastic model of the repetitive activity of neurons. Biophys. J. 6, 53–69 (1966).

    Google Scholar 

  • Grind, W. A. van de, Bouman, M. A.: A model of a retinal sampling-unit based on fluctuation theory. Kybernetik 4, 136–141 (1968a).

    Google Scholar 

  • — Koenderink, J. J., Bouman, M. A.: Models of the processing of quantum signals by the human peripheral retina. Kybernetik 6, 213–227 (1970a).

    Google Scholar 

  • Grind, W. A. van de, Koenderink, J. J., Landman, H. A. A., Bouman, M. A.: The concepts of scaling and refractoriness in psychophysical theories of vision. Kybernetik 8, 105–122 (1971).

    Google Scholar 

  • — Schalm, T. van, Bouman, M. A.: A coincidence model of the processing of quantum signals by the human retina. Kybernetik 4, 141–146 (1968b).

    Google Scholar 

  • Harmon, L. D.: Artificial neuron. Science 129, 962–963 (1959).

    Google Scholar 

  • — Studies with artificial neurons I: properties and functions of an artificial neuron. Kybernetik 1, 89–101 (1961).

    Google Scholar 

  • — Neuromimes: action of a reciprocally inhibitory pair. Science 146, 1323–1325 (1964).

    Google Scholar 

  • — Modelling studies of neural inhibition. In: Structure and function of inhibitory neuronal mechanisms. Oxford: Pergamon Press 1968.

    Google Scholar 

  • — Lewis, E. R.: Neural modelling. Physiol. Rev. 46, 513–591 (1966).

    Google Scholar 

  • Hartline, H. K., Milne, L. J., Wagman, I. H.: Fluctuation of response of visual sense cells. Fed. Proc. 6, 124 (1947) (abstract only).

    Google Scholar 

  • Hoopen, M. Ten: Multimodal interval distributions. Kybernetik 3, 17–24 (1966a).

    Google Scholar 

  • — Impulse sequences of thalamic neurons-an attempted theoretical interpretation. Brain Res. 3, 123–140 (1966b).

    Google Scholar 

  • — Pooling of impulse sequences, with emphasis on applications to neuronal spike data. Kybernetik 4, 1–10 (1967a).

    Google Scholar 

  • — Reuver, H. A.: On a waiting time problem in physiology. Statistica Neerlandica 19, 27–34 (1965a).

    Google Scholar 

  • — An n-fold coincidence problem in physiology. J. theoret. Biol. 9, 117–123 (1965b).

    Google Scholar 

  • — Selective interaction of two independent recurrent processes. J. Appl. Prob. 2, 286–292 (1965c).

    Google Scholar 

  • — The superposition of random sequences of events. Biometrika 53, 383–389 (1966c).

    Google Scholar 

  • — Interaction between two independent recurrent time series. Information and Control 10, 149–158 (1967b).

    Google Scholar 

  • Hughes, G. W., Maffei, L.: On the origin of the dark discharge of retinal ganglion cells. Arch. ital. Biol. 103, 45–59 (1965).

    Google Scholar 

  • — Retinal ganglion cell response to sinusoidal light stimulation. J. Neurophysiol. 29, 333–352 (1966).

    Google Scholar 

  • Jenik, F.: Electronic neuron models as an aid to neurophysiological research. Ergebn. Biol. 25, 206–245 (1962).

    Google Scholar 

  • — Pulse processing by neuron models. In: Neural theory and modelling, p. 190. ed. R. F. Reiss. Stanford: Stanford Univ. Press 1964.

    Google Scholar 

  • Johannesma, P. I. M.: Stochastic neural activity. A theoretical investigation. Thesis. Univ. Nijmegen, The Netherlands (1969).

    Google Scholar 

  • Jones, R. W., Li, C.C., Meyer, A. U., Pinter, R. B.: Pulse modulation in physiological systems, phenomenological aspects. I.R.E. Trans. B.M.E. 8, 59–67 (1961).

    Google Scholar 

  • Kelly, D. H.: Visual responses to time-dependent stimuli. II. Single channel model of the photopic visual system. J. opt. Soc. Amer. 51, 747–754 (1961).

    Google Scholar 

  • Koenderink, J. J., Grind, W. A. van de, Bouman, M. A.: Models of retinal signal processing at high luminances. Kybernetik 6, 227–237 (1970a).

    Google Scholar 

  • Koenderink, J. J., Grind, W. A. van de, Bouman, M. A. Foveal information processing at photopic luminances. Kybernetik, in press (1971).

  • Küpfmüller, K., Jenik, F.: Über die Nachrichtenverarbeitung in der Nervenzelle. Kybernetik 1, 1–6 (1961).

    Google Scholar 

  • Lewis, E. R.: Using electronic circuits to model simple neuroelectric interactions. Proc. IEEE 56, 6, 931–949.

  • Molnar, C. E.: Model for the convergeance of inputs upon neurons in the cochlear nucleus. M.I.T. Dissertation, 1966.

  • Moore, G. P., Perkel, D. H., Segundo, J. P.: Statistical analysis and functional interpretation of neuronal spike data. Ann. Rev. Physiol. 28, 493–522 (1966).

    Google Scholar 

  • Mundie, J. R.: Neural calculus. In: Biocybernetics of the central nervous system, p. 325–356, ed. L. D. Proctor. London: J. & A. Churchill Ltd. 1969.

    Google Scholar 

  • Naylor, T. H., Balintfy, J. L., Burdick, D.S., Kong Chu: Computer simulation techniques. J. Wiley & Sons (1966).

  • Newell, G. F.: Proc. Symp. on Time Series Analysis, ed. M. Rosenblatt. Chichester: J. Wiley & Sons 1963.

    Google Scholar 

  • Poggio, G. F., Viernstein, L. J.: Time series analysis of impulse sequences of thalamic somatic sensory neurons. J. Neurophysiol. 27, 517–545 (1964).

    Google Scholar 

  • Ratliff, F.: Some interrelations among physics, physiology and psychology in the study of vision. In: Psychology: A study of a science, vol.4, p. 417–482, ed. S. Koch. Maidenhead: McGraw-Hill 1962.

    Google Scholar 

  • Rice, S. O.: Mathematical analysis of random noise. Bell System Techn. J. 23, 24 (1954).

    Google Scholar 

  • Roy, B., Smith, D. R.: Analysis of the exponential decay model of the neuron showing frequency threshold effects. Bull. Math. Biophys. 31, 341–357 (1969).

    Google Scholar 

  • Stark, L.: Neurological control systems. Studies in bioengineering. New York: Plenum Press 1968.

    Google Scholar 

  • Stein, R. B.: A theoretical analysis of neuronal variability. Biophys. J. 5, 173–194 (1965).

    Google Scholar 

  • — Some models of neuronal variability. Biophys. J. 7, 37–68 (1967a).

    Google Scholar 

  • — The information capacity of nerve cells using a frequency code. Biophys. J. 7, 797–826 (1967b).

    Google Scholar 

  • Stevens, C. F.: A quantitative theory of neural interactions: theoretical and experimental investigations. Ph. D. Thesis, Rockefeller Univ. (1964).

  • Velden, H. A. van der: Over het aantal lichtquanten dat nodig is voor een lichtprikkel bij het menselijk oog. Physica 11, 179–189 (1944).

    Google Scholar 

  • Watanabe, A.: The interaction of electrical activity among neurons of the lobster cardiac ganglions. Japan. J. Physiol. 8, 305–318 (1958).

    Google Scholar 

  • Weiss, T. F.: A model of the peripheral auditory system. Kybernetik 3, 153–175 (1966).

    Google Scholar 

  • Yeandle, S.: Studies on the slow potential and the effects of cations on the electrical responses of the Limulus ommatidium. Ph. D. Thesis, Johns Hopkins Univ. (1957).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van de Grind, W.A., Koenderink, J.J., van der Heyde, G.L. et al. Adapting coincidence scalers and neural modelling studies of vision. Kybernetik 8, 85–105 (1971). https://doi.org/10.1007/BF00272290

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00272290

Keywords

Navigation