Skip to main content
Log in

Biosynthesis of cyclic β-(1,2)-glucans in Rhizobium leguminosarum biovars viciae, phaseoli and trifolii

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Inner membranes of Rhizobium leguminosarum biovars viciae, phaseoli, and trifolii synthesized a heterogenous family of neutral cyclic β-(1,2)-glucans in a reaction system that used oligosaccharide intermediates covalently bound to a large protein. This glucoprotein showed a slightly lower mobility on SDS-polyacrylamide gels (apparent mol. mass of 320 kDa) than the β-(1,2)-glucan intermediate protein of Rhizobium meliloti. In vivo pulse-label experiments with growing cells of R. leguminosarum biovar trifolii RS800 using radioactive glucose showed that few species of cyclic β-(1,2)-glucans were synthesized and up to 30% were substituted with charged non-glycosidic residues, probably sn-1-phosphoglycerol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altabe S, Iñon de Ianino N, de Mendoza D, Ugalde R (1990) Expression of the Agrobacterium tumefaciens chvB virulence region in Azospirillum spp. J Bacteriol 172:2563–2567

    Google Scholar 

  • Amemura A (1984) Synthesis of (1–2)-β-D-glucan by cell-free extracts of Agrobacterium radiobacter IFO 12665b1 and Rhizobium phaseoli AHU 1133. Agric Biol Chem 48:1809–1817

    Google Scholar 

  • Amemura A (1985) Properties and in vitro synthesis of cyclic (1–2)-β-d-glucan. Mem Inst Sci Ind Res, Osaka Univ 42:69–79

    Google Scholar 

  • Amemura A, Hisamatsu M, Mitani H, Harada T (1983) Cyclic (1–2)-β-d-glucan and the oligosaccharide repeating-units of extracellular acidic polysaccharides produced by Rhizobium. Carbohydr Res 114:227–285

    Google Scholar 

  • Batley M, Redmond JW, Djordjevic SP, Rolfe BG (1987) Characterization of glycerophosphorylated cyclic β-1,2-glucans from a fast-growing Rhizobium species. Biochim Biophys Acta 901:119–126

    Google Scholar 

  • Bhagwat AA, Keister DL (1992) Synthesis of β-glucans by Bradyrhizobium japonicum and Rhizobium fredii. Can J Microbiol 38:510–514

    Google Scholar 

  • Bhagwat AA, Tully RE, Keister DL (1992) Isolation and characterization of and ndvB locus from Rhizobium fredii. Mol Microbiol 6:2159–2165

    Google Scholar 

  • Bossio JC, Iñon de Iannino N, Dankert MA (1986) In vitro synthesis of a lipid-linked acetylated and pyruvilated oligosaccharide in Rhizobium trifolii. Biochem Biophys Res Commun 134:205–211

    Google Scholar 

  • Bray GA (1960) A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Anal Biolchem 1:279–285

    Google Scholar 

  • Breedveld M W, Zevenhuizen LPTM, Zehnder AJB (1990) Excessive excretion of cyclic β-(1,2)-glucan by Rhizobium trifolii TA-1. Appl Environ Microbiol 56:2080–2086

    Google Scholar 

  • Breedveld MW, Zevenhuizen LPTM, Zehnder AJB (1991) Osmotically regulated trehalose accumulation and cyclic β-(1,2)-glucan excretion by Rhizobium leguminosarum biovar trifolii TA-1. Arch Microbiol 156:501–506

    Google Scholar 

  • Breedveld MW, Zevenhuizen LPTM, Zehnder AJB (1992) Synthesis of cyclic β-(1,2)-glucans by Rhizobium leguminosarum biovar trifolii TA-1: factors influencing excretion. J Bacteriol 174:6336–6342

    Google Scholar 

  • Breedveld MW, Canter Cremers HCJ, Batley M, Posthumus MA, Zevenhuizen LPTM, Wijffelman CA, Zehnder AJB (1993) Polysaccharide synthesis in relation to nodulation behavior of Rhizobium leguminosarum. J Bacteriol 175:750–757

    Google Scholar 

  • Brewin NJ, Dejong TM, Phillips DA, Johnston AWB (1980) Cotransfer of determinants for hydrogenase activity and nodulation ability in Rhizobium leguminosarum. Nature 288:77–79

    Google Scholar 

  • Cangelosi GA, Martinetti G, Leigh JA, Lee CC, Theines C, Nester EW (1989) Role of Agrobacteium tumefaciens ChvA protein in export of β-1,2-glucan. J Bacteriol 171:1609–1615

    Google Scholar 

  • Chamberlain JP (1979) Fluorographic detection of radioactivity in polyacrilamide gels with the water-soluble fluor, sodium salicylate. Anal Biochem 98:132–135

    Google Scholar 

  • Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77:7347–7351

    Google Scholar 

  • Douglas CJ, Staneloni RJ, Rubin RA, Nester EW (1985) Identification and genetic analysis of an Agrabacterium tumefaciens chromosomal virulence region. J Bacteriol 161:850–860

    Google Scholar 

  • Dylan T, Ielpi L, Stanfield S, Kashyap L, Douglas C, Yanofsky M, Nester EW, Helinski DR, Ditta G (1986) Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 83:4403–4407

    Google Scholar 

  • Dylan T, Helinski DR, Ditta GS (1990) Hypoosmotic adaptation in Rhizobium meliloti requires β-(1–2)-glucan. J Bacteriol 172:1400–1408

    Google Scholar 

  • Geiger O, Weissborn AC, Kennedy EP (1991) Biosynthesis and excretion of cyclic glucans by Rhizobium meliloti 1021. J Bacteriol 173:3021–3024

    Google Scholar 

  • Geremía RA, Cavaignac S, Zorreguieta A, Toro N, Olivares J, Ugalde RA (1987) A Rhizobium meliloti mutant that forms ineffective pseudonodules in alfalfa produces exopolysaccharides, but fails to form β-(1-2)glucan. J Bacteriol 169:880–884

    Google Scholar 

  • Ielpi L, Dylan T, Ditta GS, Helinski DR, Stanfield SW (1990) The ndvB locus of Rhizobium meliloti encodes a 319-kDa protein involved in the production of β-(1–2)-glucan. J Biol Chem 265:2843–2851

    Google Scholar 

  • Iñón de Iannino N, Ugalde RA (1989) Biochemical characterization of avirulent Agrobacterium tumefaciens chvA mutants: synthesis and excretion of β-(1,2)-glucan. J Bacteriol 171:2842–2849

    Google Scholar 

  • Koepsell HJ, Sharpe ES (1952) Microdetermination of pyruvic and α-ketoglutaric acids. Arch Biochem Biophys 38:443–449

    Google Scholar 

  • Lamb JW, Hombrecher G, Johnston AWB (1982) Plasmid-determined nodulation and nitrogen-fixation abilities in Rhizobium phaseoli. Mol Gen Genet 186:449–452

    Google Scholar 

  • Lepek V, Navarro de Navarro Y, Ugalde RA (1990) Synthesis of β(1–2)glucan in Rhizobium loti. Expression of Agrobacterium tumefaciens chvB virulence region. Arch Microbiol 155:35–41

    Google Scholar 

  • Megías M, Caviedes MA, Palomares AJ, Perez-Silva J (1982) Use of plasmid R68.45 for constructing a circular linkage map of the Rhizobium trifolii chromosome. J Bacteriol 149:59–64

    Google Scholar 

  • Miller KJ, Kennedy EP, Reinhold VN (1986) Osmotic adaption by gram-negative bacteria: possible role of periplasmic oligosaccharides. Science 231:48–51

    Google Scholar 

  • Miller KJ, Reinhold VN, Weissborn AC, Kennedy EP (1987) Cyclic glucans produced by Agrobacterurium tumefaciens are substituted with sn-1-phosphoglycerol residues. Biochim Biophys Acta 901:112–118

    Google Scholar 

  • Miller KJ, Gore RS, Benesi AJ (1988) Phosphoglycerol substituents present on the cyclic β-1,2-glucans of Rhizobium meliloti 1021 are derived from phosphatidylglycerol. J Bacteriol 170:4569–4575

    Google Scholar 

  • Osborn MJ, Munson R (1984) Separaration of inner (cytoplasmic) and outer membranes of gram-negative bacteria. Methods Enzymol 31A:642–653

    Google Scholar 

  • Puvanesarajah V, Schell FM, Stacey G, Douglas CJ, Nester EW (1985) Role for 2-linked-β-d-glucan in the virulence of Agrobacterium. 164:102–106

    Google Scholar 

  • Schneider JE, Reinhold V, Rumley MK, Kennedy EP (1979) Structural studies of the membrane-derived oligosaccharides of Escherichia coli. J Biol Chem 254:10135–10138

    Google Scholar 

  • Stanfield SW, Ielpi L, O'Brochta D, Helinski DR, Ditta GS (1988) The ndvA gene product of Rhizobium meliloti is required for β-(1,2)-glucan production and has homology to the ATP-binding export protein HlyB. J Bacteriol 170:3523–3530

    Google Scholar 

  • Studier FW (1973) Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Biol 79:237–248

    Google Scholar 

  • Therisod H, Kennedy EP (1987) The function of acyl carrier protein in the synthesis of membrane-derived oligosaccharides does not require its phosphopantetheine prosthetic group. Proc Natl Acad Sci USA 84:8235–8238

    Google Scholar 

  • Therisod H, Weissborn AC, Kennedy EP (1986) An essential function for acyl carrier protein in the biosynthesis of membrane-derived oligosaccharides of Escherichia coli. Proc Natl Acad Sci USA 83:7236–7240

    Google Scholar 

  • Virji M, Saunders JR, Sims G, Makepeace K, Maskell D, Ferguson DJP (1993) Pilus-facilitated adherence of Neisseria meningitidis to human epithelial and endothelial cells: modulation of adherence phenotype occurs concurrently with changes in primary amino acid sequence and the glycosylation status of pilin. Mol Microbiol 10:1013–1028

    Google Scholar 

  • Weissborn AC, Kennedy EP (1984) Biosynthesis of membrane-derived oligosaccharides. J Biol Chem 259:12644–12651

    Google Scholar 

  • Weissborn AC, Rumley MK, Kennedy EP (1991) Biosynthesis of membrane-derived oligosaccharides. Membrane-bound glucosyltransferase system from Escherichia coli requires polyprenyl phosphate. J Biol Chem 266:8062–8067

    Google Scholar 

  • Williams AM, Enns CA (1991) A mutated transferrin receptor lacking asparagine-linked glycosylation sites shows reduced functionality and an association with binding immunoglobulin protein. J Biol Chem 266:17648–17654

    Google Scholar 

  • Williamson G, Damani K, Devenney P, Faulds CB, Morris VJ, Stevens BJH (1992) Mechanism of action of cyclic β-1,2-glucan synthetase from Agrobacterium tumefaciens: competition between cyclization and elongation reactions. J Bacteriol 174:7941–7947

    Google Scholar 

  • Zevenhuizen LPTM, Van Veldhuizen A, Fokkens RH (1990) Reexamination of cellular cyclic β-1,2-glucans of Rhizobiaceae: distribution of ring sizes and degrees of glycerol-1-phosphate substitution. Antoine Van Leeuwenhoek 57:173–178

    Google Scholar 

  • Zorreguieta A, Ugalde RA (1986) Formation in Rhizobium and Agrobacterium spp. of a 235-kilodalton protein intermediate in β-D(1–2)-glucan synthesis. J Bacteriol 167:947–951

    Google Scholar 

  • Zorreguieta A, Tolmasky ME, Staneloni RJ (1985a) The enzymatic synthesis of β-1–2-glucans. Arch Biochem Biophys 238:368–372

    Google Scholar 

  • Zorreguieta A, Ugalde RA, Leloir LF (1985b) An intermediate in cyclic β-1–2-glucan biosynthesis. Biochem Biophys Res Commun 126:352–357

    Google Scholar 

  • Zorreguieta A, Geremía R, Cangelosi GA, Nester EW, Ugalde RA (1988) Identification of the product of an Agrobacterium tumefaciens chromosomal virulence gene. Mol Plant Microbe Interact 1:121–127

    Google Scholar 

  • Zorreguieta A, Cavaignac S, Geremía RA, Ugalde RA (1990) Osmotic regulation of β(1–2)glucan synthesis in members of the family Rhizobiaceae. J Bacteriol 172:4701–4704

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angeles Zorreguieta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro, O.A., Zorreguieta, A., Semino, C. et al. Biosynthesis of cyclic β-(1,2)-glucans in Rhizobium leguminosarum biovars viciae, phaseoli and trifolii . Arch. Microbiol. 163, 454–462 (1995). https://doi.org/10.1007/BF00272135

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00272135

Key words

Navigation