Skip to main content
Log in

The role of cAMP in flagellation of Salmonella typhimurium

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

A mutational alteration either in adenylate cyclase (cya -) or in cyclic-3′5′-AMP (cAMP) receptor protein (crp -) rendered Salmonella typhimurium incapable of producing flagella. The amount of mRNA specific for flagellin in these mutants was almost negligible when assayed in an in vitro protein synthesizing system. A secondary mutation, cfs, partially suppressing the cya - mutation, was identified among the revertants of cya -. A mutation in the same cistron as cfs resulted in a non-flagellate phenotype either by itself or in combination with cfs. The cistron, which was given the gene symbol flaT, was located between flaE and flaL. It was suggested that cAMP receptor protein together with cAMP modulates the gene flaT, which in turn acts as a positive effector on the synthesis of active mRNA specific for flagellin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, M. H.: Bacteriophages. Interscience Publishers, Inc., New York (1959)

    Google Scholar 

  • Adelberg, E. A., Mandel, M., Chen, G. C. C.: Optimal conditions for mutagenesis by N-methyl-N′-nitro-N-nitrosoguanidine in Escherichia coli K 12. Biochem. biophys. Res. Commun. 18, 788–795 (1965)

    Google Scholar 

  • Adler, J., Templeton, B. J.: The effect of environmental conditions on the motility of Escherichia coli. J. gen. Microbiol. 46, 175–184 (1967)

    Google Scholar 

  • Berkowitz, D.: d-Mannitol utilization in Salmonella typhimurium. J. Bact. 105, 232–240 (1971)

    Google Scholar 

  • Enomoto, M., Iino, T.: Colonial dimorphism in non-motile Salmonella. J. Bact. 86, 473–477 (1963)

    Google Scholar 

  • Eron, L., Block, R.: Mechanism of initiation and repression of in vitro transcription of the lac operon of Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 68, 1828–1832 (1971)

    Google Scholar 

  • Gesteland, R. F.: Isolation and characterization of ribonuclease I mutants of Escherichia coli. J. molec. Biol. 16, 67–84 (1966)

    Google Scholar 

  • Gilman, A. G.: A protein binding assay for adenosine 3′:5′-cyclic monophosphate. Proc. nat. Acad. Sci. (Wash.) 67, 305–312 (1970)

    Google Scholar 

  • Hong, J., Smith, G. R., Ames, B. N.: Adenosine 3′,5′-cyclic monophosphate concentration in the bacterial host regulates the viral decision between lysogeny and lysis. Proc. nat. Acad. Sci. (Wash.) 68, 2258–2262 (1971)

    Google Scholar 

  • Ide, M.: Adenyl cyclase of Escherichia coli. Biochem. biophys. Res. Commun. 36, 42–46 (1969)

    Google Scholar 

  • Iino, T.: Genetics and chemistry of bacterial flagella. Bact. Rev. 33, 454–475 (1969)

    Google Scholar 

  • Iino, T., Enomoto, M.: Genetical studies of non-flagellate mutants of Salmonella. J. gen. Microbiol. 43, 315–327 (1966)

    Google Scholar 

  • Jost, J. P., Rickenberg, H. V.: Cyclic AMP. Ann. Rev. Biochem. 40, 741–774 (1971)

    Google Scholar 

  • Joys, T. M., Stocker, B. A. D.: Complementation of nonflagellate Salmonella mutants. J. gen. Microbiol. 41, 47–55 (1965)

    Google Scholar 

  • Lederberg, J.: Linear inheritance in transductional clones. Genetics 41, 845–871 (1956)

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  • Meynell, E. W.: A phage ϕΞ, which attacks motile bacteria. J. gen. Microbiol. 25, 253–290 (1961)

    Google Scholar 

  • Miller, J. H.: Experiments in molecular genetics. Cold Spring Harbor: Cold Spring Harbor Laboratory (1972)

    Google Scholar 

  • Nakazawa, T., Yokota, T.: Requirement of adenosine 3′,5′-cyclic monophosphate for l-arabinose isomerase synthesis in Escherichia coli. J. Bact. 113, 1412–1418 (1973)

    Google Scholar 

  • Nissley, S. P., Anderson, W. B., Gottesman, M. E., Perlman, R. L., Pastan, I.: In vitro transcription of the gal operon requires cyclic adenosine monophosphate and cyclic adenosine monophosphate receptor protein. J. biol. Chem. 246, 4671–4678 (1971)

    Google Scholar 

  • Pastan, I., Perlman, R.: Cyclic adenosine monophosphate in bacteria. Science 169, 339–344 (1970)

    Google Scholar 

  • Patterson-Delafield, J., Martinez, R. J., Stocker, B. A. D., Yamaguchi, S.: A new fla gene in Salmonella typhimurium-flaR-and its mutant phenotype-superhooks. Arch. Microbiol. 90, 107–120 (1973)

    Google Scholar 

  • Perlman, R., Pastan, I.: Pleiotropic deficiency of carbohydrate utilization in adenyl cyclase deficient mutant of Escherichia coli. Biochem. biophys. Res. Commun. 37, 151–157 (1969)

    Google Scholar 

  • Potter, K., Chaloner-Larsson, G., Yamazaki, H.: Abnormally high rate of cyclic AMP excretion from an Escherichia coli mutant deficient in cyclic AMP receptor protein. Biochem. biophys. Res. Commun. 57, 379–385 (1974)

    Google Scholar 

  • Rickenberg, H. V.: Cyclic AMP in prokaryotes. Ann. Rev. Microbiol. 28, 353–369 (1974)

    Google Scholar 

  • Sanderson, K. E.: Linkage map of Salmonella typhimurium, edition IV. Bact. Rev. 36, 558–586 (1972)

    Google Scholar 

  • Schmieger, H.: A method for detection of phage mutants with altered transducing ability. Molec. gen. Genet. 110, 378–381 (1971)

    Google Scholar 

  • Schwartz, D., Beckwith, J. R.: Mutants missing a factor necessary for the expression of catabolite sensitive operons in E. coli. In: The lactose operon, Beckwith, J. R., Zipser, D., eds., p. 417–422. Cold Spring Harbor: Cold Spring Harbor Laboratory (1970)

    Google Scholar 

  • Shizuta, Y., Hayaishi, O.: Regulation of biodegradative threonine deaminase synthesis in Escherichia coli by cyclic adenosine 3′5′-monophosphate. J. biol. Chem. 245, 5416–5423 (1970)

    Google Scholar 

  • Silverman, M., Simon, M.: Characterization of Escherichia coli flagellar mutants that are insensitive to catabolite repression. J. Bact. 120, 1196–1203 (1974)

    Google Scholar 

  • Silverstone, A. E., Arditti, R. R., Magasanik, B.: Catabolite-insensitive revertants of lac promoter mutants. Proc. nat. Acad. Sci. (Wash.) 66, 773–779 (1970)

    Google Scholar 

  • Silverstone, A. E., Magasanik, B., Reznikoff, W. S., Miller, J. H., Beckwith, J. R.: Catabolite sensitive site of the lac operon. Nature (Lond.) 221, 1012–1014 (1969)

    Google Scholar 

  • Smith, H. O., Levine, M.: A phage P22 gene controlling integration of prophage. Virology 31, 207–216 (1967)

    Google Scholar 

  • Stocker, B. A. D.: Abortive transduction of motility in Salmonella: a non replicated gene transmitted through many generations to single descendant J. gen. Microbiol. 15, 575–598 (1956)

    Google Scholar 

  • Suzuki, H., Iino, T.: In vitro synthesis of phase-specific flagellin of Salmonella. J. molec. Biol. 81, 57–70 (1973)

    Google Scholar 

  • Yamaguchi, S., Iino, T., Horiguchi, T., Ohta, K.: Genetic analysis of fla and mot cistrons closely linked to H1 in Salmonella abortusequi and its derivatives. J. gen. Microbiol. 70, 59–75 (1972)

    Google Scholar 

  • Yokota, T., Gots, J. S.: Requirement of adenosine 3′,5′-cyclic phosphate for flagella formation in Escherichia coli and Salmonella typhimurium. J. Bact. 103, 513–516 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. G. Wittmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komeda, Y., Suzuki, H., Ishidsu, Ji. et al. The role of cAMP in flagellation of Salmonella typhimurium . Molec. Gen. Genet. 142, 289–298 (1975). https://doi.org/10.1007/BF00271253

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00271253

Keywords

Navigation