Skip to main content
Log in

Cytochemical characterization of leucocytes from the seawater teleost, gilthead seabream (Sparus aurata L.)

  • Original Paper
  • Published:
Histochemistry Aims and scope Submit manuscript

Abstract

The cytochemical characterization of head-kidney and peripheral blood leucocytes of gilthead seabream (Sparus aurata L.) was studied by light and electron microscopy. Neutrophilic granulocytes show some cytoplasmic granules, which are positive for alkaline phosphatase and peroxidase but acid phosphatase negative. The scarce granules found in the cytoplasm of the circulating neutrophils and their cytochemical features seem to be indicative of an immature stage. Acidophils are also alkaline phosphatase and peroxidase positive at pH 11.0. They are strongly positive for acid phosphatase and acid phosphatase activity may thus be considered a cytochemical marker to characterize and differentiate neutrophilic from acidophilic granulocytes in this fish species. Three granule populations are characterized in the cytoplasm of the gilthead seabream acidophils: the first is positive only for peroxidase and the second contains a dense core with acid and alkaline phosphatase activities, surrounded by a thin peroxidase positive electron-dense halo. The third granule type contains an eccentric core, which is strongly positive for acid and alkaline phosphatase and peroxidase. As regards their cytochemical features, the first and second granule types seem to correspond respectively to the azurophilic and specific granules found in acidophils of mammals and could be involved in phagocytic processes, thus playing an important microbicidal role in this species. The monocytes, monocyte-macrophages and macrophages show different cytochemical features. The first have scarce acid phosphatase-positive lysosomes, while blood monocyte-macrophages and macrophages are positive for acid and alkaline phosphatases and for peroxidase; the monocyte-macrophages show scarce lysosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baggiolini M, Horisberger U, Gennaro R, Dewald B (1985) Identification of three types of granules in neutrophils of ruminants. Ultrastructure of circulating and mature cells. Lab Invest 52: 151–158

    Google Scholar 

  • Bainton DF, Farquhar MG (1968) Differences in enzyme content of azurophil and specific granules of polymorphonuclear leukocytes. II. Cytochemistry and electron microscopy of bone marrow cells. J Cell Biol 39: 299–317

    Google Scholar 

  • Bainton DF, Farquhar MG (1970) Segregation and packaging of granule enzymes in eosinophilic leucocytes. J Cell Biol 45: 54–73

    Google Scholar 

  • Bainton DF, Ullyot JL, Farquhar MG (1971) The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. Origin and content of azurophil and specific granules. J Exp Med 134: 907–934

    Google Scholar 

  • Bainton DF, Nichols BA, Farquhar MG (1976) Primary lysosomes of blood leukocytes. In: Digle JT, Dean RT (eds) Lysosomes in biology and pathology, vol 5. Elsevier North Holland, Amsterdam Oxford, pp 3–32

    Google Scholar 

  • Barber DL, Westermann JEM (1975) Morphological and histochemical studies on a PAS-positive granular leukocyte in blood and connective tissues of Catostomus commersonii Lacépède (Teleostei: Pisces). Am J Anat 142: 205–220

    Google Scholar 

  • Barber DL, Westermann JEM (1978) Occurrence of the periodic acid-Schiff positive granular leucocyte (PAS-GL) in some fishes and its significance. J Fish Biol 12: 35–43

    Google Scholar 

  • Barber DL, Westermann JEM (1981) The blood cells of the Antarctic icefish Chaenocephalus aceratus Lönnberg: light and electron microscopic observations. J Fish Biol 19: 11–28

    Google Scholar 

  • Bayne CJ (1986) Pronephric leucocytes of Cyrpinus carpio: isolation, separation and characterization. Vet Immunol Immunopathol 12: 141–151

    Google Scholar 

  • Bielek E (1979) Electron microscopical studies of blood cells in teleosts. II. Thrombocytes. Zool Jahrb Anat Bd 101: 19–26

    Google Scholar 

  • Bielek E (1981) Developmental stages and localization of peroxidatic activity in the leucocytes of three teleost species (Cyprinus carpio L.; Tinca tinca L.; Salmo gairdneri Richardson). Cell Tissue Res 220: 163–180

    Google Scholar 

  • Blaxhall PC, Daisley KW (1973) Cytochemical stains to aid the identification of the less mature cells which may be found in fish blood. J Fish Biol 5: 771–782

    Google Scholar 

  • Blaxhall PC, Hood K (1985) Cytochemical enzyme staining of fish lymphocytes separated on a Percoll gradient. J Fish Biol 27: 749–755

    Google Scholar 

  • Bloom W, Fawcett DW (1986) Bone marrow and blood cell formation. In: Fawcett DW (ed) A text book of histology. Saunders, Philadelphia, pp 239–264

    Google Scholar 

  • Bodammer JE (1986) Ultrastructural observations on peritoneal exudate cells from the striped bass. Vet Immunol Immunopathol 12: 127–140

    Google Scholar 

  • Brederoo P, Van der Meulen J, Mommaas-Kienhuis AM (1983) Development of the granule population in neutrophil granulocytes from human bone marrow. Cell Tissue Res 234: 469–496

    Google Scholar 

  • Brederoo P, Van der Meulen J, Daems WT (1986) Ultrastructural localization of peroxidase activity in developing neutrophil granulocytes from human bone marrow. Histochemistry 84: 445–453

    Google Scholar 

  • Cannon MS, Mollenhauer HH, Cannon AM, Eurell TE, Lewis DH (1980) Ultrastructural localization of peroxidase activity in neutrophil leucocytes of Ictalurus punctatus. Can J Zool 58: 1139–1143

    Google Scholar 

  • Caxton-Martins AE (1979) Cytochemical studies of cell population in peripheral blood smears of two West african teleosts. Am J Anat 128: 269–276

    Google Scholar 

  • Daimon T, Mizuhira V, Takahasi I, Uchida K (1979) The surface connected canalicular system of carp (Cyprinus carpio) thrombocytes: its fine structure and three-dimensional architecture. Cell Tissue Res 203: 355–365

    Google Scholar 

  • Davies MG, Haynes ME (1975) Light- and electron-microscope observations on certain leukocytes in a teleost fish and a comparison of the envelope-limited monolayers of chromatin structural units in different species. J Cell Sci 17: 263–285

    Google Scholar 

  • Ellis AE (1976) Leucocytes and related cells in the plaice Pleuronectes platessa. J Fish Biol 8: 143–156

    Google Scholar 

  • Esteban MA, Meseguer J, García-Ayala A, Agulleiro B (1989) Erythropoiesis and thrombopoiesis in the head kidney of the sea bass (Dicentrarchus labrax L.). An ultrastructural study. Arch Histol Cytol 52: 407–419

    Google Scholar 

  • Ezeasor DN, Stokoe WM (1980) A cytochemical, light and electron microscopic study of the eosinophilic granule cells in the gut of the rainbow trout, Salmo gairdneri Richardson. J Fish Biol 17: 619–634

    Google Scholar 

  • Farquhar MG, Bainton DF (1972) Cytochemical studies on leukocyte granules. In: Takeuchi T, Ogawa K, Fujita S (eds) Histochemistry and cytochemistry. Proceedings 4th International Congress Kyoto, pp 25–26

  • Fey F (1966a) Vergleichende Hämozytologie niederer Vertebraten. III. Granulozyten. Folia Haematol 86: 1–20

    Google Scholar 

  • Fey F (1966b) Vergleichende Hämozytologie niederer Vertebraten. IV. Monozyten-plasmozyten-lymphozyten. Folia Haematol 86: 133–147

    Google Scholar 

  • Fujii T (1981) Antibody-enhanced phagocytosis of lamprey polymorphonuclear leucocytes against sheep erythrocytes. Cell Tissue Res 219: 41–51

    Google Scholar 

  • Fujimaki Y, Isoda M (1990) Fine-structural study of leucocytes in the goldfish, Carassius auratus. J Fish Biol 36: 821–831

    Google Scholar 

  • Garavini C, Martelli P (1981) Alkaline phosphatase and peroxidase in goldfish (Carassius auratus) leucocytes. Bas Appl Histochem 25: 133–139

    Google Scholar 

  • Goldberg RF, Barka T (1962) Acid phosphatase activity in human blood cells. Nature 195: 279

    Google Scholar 

  • Gomori G (1952) Microscopic histochemistry. Principles and practise. University of Chicago Press, Chicago

    Google Scholar 

  • Grozdea J, Vergues H, Martin J (1983) Urea-resistant neutrophil alkaline phosphatase in mothers with trisomy 21 pregnancy. Lancet II:799–800

    Google Scholar 

  • Hine PM, Wain JM, Boustead NC, Dunlop DM (1986a) Light and electron microscopic studies on the enzyme cytochemistry of leucocytes of eels, Anguilla species. J Fish Biol 29: 721–735

    Google Scholar 

  • Hine PM, Wain JM, Dunlop DM (1986b) Observations on granulocyte peroxidase in New Zealand freshwater eels, Anguilla species. J Fish Biol 29: 711–720

    Google Scholar 

  • Jordan HE (1938) Handbook of haematology. Hoeber, New York

    Google Scholar 

  • Kaplow LS (1955) A histochemical procedure for localizing and evaluating leucocyte alkaline phosphatase activity in smears of blood and marrow. Blood 10: 1023–1029

    Google Scholar 

  • Karnovsky MJ, Robinson JM, Briggs RT, Karnovsky ML (1981) Oxidative cytochemistry in phagocytosis: the interface between structure and function (Review). Histochem J 13: 1–22

    Google Scholar 

  • Kélenyi G, Németh A (1969) Comparative histochemistry and electron microscopy of the eosinophil leucocytes of vertebrates. I. A study of avian, reptile, amphibian and fish leucocytes. Acta Biol Acad Sci Hung 20: 405–422

    Google Scholar 

  • Kreutzmann HL (1976) Untersuchungen zur Morphologie des Blutes vom Europäischen Aal (Anguilla anguilla). II. Untersuchungen zur Granulopoese. Folia Haematol 103: 686–700

    Google Scholar 

  • Kreutzmann HL (1978) Untersuchungen zur Morphologie des Blutes vom europäischen Aal (Anguilla anguilla). IV. Die Thrombocyten und ihre Entwicklungsreihe. Folia Haematol 105: 239–247

    Google Scholar 

  • Kusuda R, Ikeda Y (1987) Studies on classification of eel leucocytes. Bull Japan Soc Sci Fish 53: 205–209

    Google Scholar 

  • Lillie RD, Fullmer HM (1976) Histopathologic technique and practical histochemistry. McGraw-Hill, New York

    Google Scholar 

  • López-Ruiz A, Esteban MA, Meseguer J (1992) Blood cells of the gilthead seabream (Sparus aurata L.) Light and electron microscopic studies. Anat Rec 234: 161–171

    Google Scholar 

  • Mattisson AGM, Fänge R (1977) Light and electron microscopic observations on the blood cells of the Atlantic hagfish, Myxine glutinosa (L.). Acta Zool Stockh 58: 205–221

    Google Scholar 

  • McArthur CP (1977) Haematology of the New Zealand freshwater eels Anguilla australis schmidtii and Anguilla dieffenbachii. N Z J Zool 4: 5–20

    Google Scholar 

  • McArthur JI, Fletcher TC (1985) Phagocytosis in fish. In: Manning MJ, Tatner MF (eds) Fish immunology. Academic Press, London, pp 29–46

    Google Scholar 

  • McCumber LJ, Sigel MM, Trauger RJ, Cuchens MA (1982) RES structure and function of the fishes. In: Cohen N, Sigel M (eds) The reticuloendothelial system. A comprehensive treatise. Plenum Press, New York London, pp 393–422

    Google Scholar 

  • Meseguer J, Esteban MA, García-Ayala A, López-Ruiz A, Agulleiro B (1990) Granulopoiesis in the head-kidney of the sea bass (Dicentrarchus labrax L.): an ultrastructural study. Arch Histol Cytol 53:287–296

    Google Scholar 

  • Meseguer J, Esteban MA, Agulleiro B (1991) Stromal cells, macrophages and lymphoid cells in the head-kidney of sea bass (Dicentrarchus labrax L.). An ultrastructural study. Arch Histol Cytol 54: 299–309

    Google Scholar 

  • Meseguer J, Esteban MA, Muñoz J, López-Ruiz A (1993) Ultrastructure of the peritoneal exudate cells (PEC) of seawater teleosts, seabream (Sparus aurata L.) and sea bass (Dicentrarchus labrax L.). Cell Tissue Res 273: 301–307

    Google Scholar 

  • Morrow WJW, Pulsford A (1980) Identification of peripheral blood leucocytes of the dogfish (Scyliorhinus canicula L.) by electron microscopy. J Fish Biol 17: 461–475

    Google Scholar 

  • Padykula HA (1988) Histochemistry and cytochemistry. In: Weiss L (ed) Cell and tissue biology. A textbook of histology. Urban & Schwarzenberg, Baltimore Munich, pp 93–112

    Google Scholar 

  • Page M, Rowley AF (1983) A cytochemical, light and electron microscopical study of the leucocytes of the adult river lamprey, Lampetra fluviatilis (L. Gary). J Fish Biol 22: 503–517

    Google Scholar 

  • Parish N, Wrathmell A, Harris JE (1985) Phagocytic cells in the dogfish (Scyliorhinus canicula L.). In: Manning MJ, Tatner MF (eds) Fish immunology. Academic Press, London, pp 71–83

    Google Scholar 

  • Park SW, Wakabayashi H (1989) Characteristics of pronephric leucocytes of Japanese eel, Anguilla japonica. Fish Pathol 24: 225–231

    Google Scholar 

  • Pearse AGE (1980) Histochemistry. Theoretical and applied, 4th edn, vol 1. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Romestand B, Trilles JP (1984) Nomenclature and cytologie descriptive des éléments figurés du sang et des organes hémopoiétiques du Bar (Dicentrarchus labrax). Rec Med Vet 160: 833–840

    Google Scholar 

  • Roubal FR (1986) Blood and other possible inflammatory cells in the sparid Acanthopagrus australis (Günther). J Fish Biol 28: 573–593

    Google Scholar 

  • Rowley AF, Page M (1985) Lamprey melano-macrophages: structure and function. In: Manning MJ, Tatner MF (eds) Fish immunology. Academic Press, Orlando, pp 273–284

    Google Scholar 

  • Rowley AF, Hunt TC, Page M, Mainwaring G (1988) Fish. In: Rowley AF, Ratcliffe NA (eds) Vertebrate blood cells. Cambridge University Press, Cambridge, pp 19–127

    Google Scholar 

  • Savage AG (1983) The ultrastructure of the blood cells of the pike Esox lucius L. J Morphol 178: 187–206

    Google Scholar 

  • Suzuki K, Kusakari M, Shimizu M, Yamada J (1983) Hematological studies of a rockfish, Sebastes schlegeli Hilgendorf 1. Classification of blood cells in circulating blood and hematopoietic organs. Sci Rep Hokkaido Fish Exp Stn 25: 201–215

    Google Scholar 

  • Temkin RJ, McMillan DB (1986) Gut-associated lymphoid tissue (GALT) of the goldfish, Carassius auratus. J Morphol 190: 9–26

    Google Scholar 

  • Yam LT, Li CY, Crosby WH (1971a) Cytochemical identification of monocytes and granulocytes. Am J Clin Pathol 55: 283–290

    Google Scholar 

  • Yam LT, Li CY, Lam KW (1971b) Tartrate-resistant acid phosphatase isoenzyme in the reticulum cells of leukemic reticuloen-dotheliosis. New Engl J Med 284: 357–360

    Google Scholar 

  • Zuasti A, Ferrer C (1988) Granulopoiesis in the head-kidney of Sparus auratus. Arch Histol Cytol 52: 249–255

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meseguer, J., López-Ruiz, A. & Esteban, M.A. Cytochemical characterization of leucocytes from the seawater teleost, gilthead seabream (Sparus aurata L.). Histochemistry 102, 37–44 (1994). https://doi.org/10.1007/BF00271047

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00271047

Keywords

Navigation