Skip to main content
Log in

Hemocytes of the Australian Red Claw Crayfish (Cherax quadricarinatus): Morphology and Hemogram

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The aim of this work was to conduct a morphological analysis of hemocytes of the Australian red claw crayfish (Cherax quadricarinatus). Hemocytes were studied in the native and anticoagulant-treated hemolymph and stained with May–Grünwald and Romanowsky stains. Hemolymph was collected with a syringe from the ventral sinus. Microscopy was carried out using 40× or 100× objective lenses. Hemocyte count and the percentage of each of their types were determined in the Goryaev chamber. In the hemolymph of C. quadricarinatus, among the already known types of hemocytes (agranulocytes or hyalinocytes, semigranulocytes, and granulocytes), we found the cells morphologically different from the previously described, transparent cells. Hyalinocytes are oval or fusiform cells, about 26.6 µm long and 9.2 µm wide. As a rule, they lack granules, but sometimes a small number of tiny granules, sized less than 0.5 µm, can be found. Cells of this type are able to outlive other cells on a slide after isolation. Semigranulocytes are also oval or fusiform cells, 26.7 µm long and 9.3 µm wide, with a moderate number of small-sized granules (<0.5 µm) and sparse medium-sized granules ranging from 0.77 to 1.69 µm. Granulocytes are oval-shaped cells, the largest of all types, having a length and width of 28.7 and 11.1 µm, respectively. They contain large (0.8–2.48 µm) numerous granules and show a high refraction, due to which this cell type is well recognizable under a microscope. These cells have a lowest nuclear–cytoplasmic ratio compared to the former two types. Transparent cells are specifically characterized by abundant well-developed pseudopodia. After cell rounding, its diameter averages 10.7 ± 1.11 µm. This cell type begins to show up 10 min after their isolation in the anticoagulant-untreated hemolymph. Hyalinocytes are the dominant type of cells in the hemolymph, their proportion is 48.3 ± 11.4%, while semigranulocytes and granulocytes account for 26.3 ± 7.8 and 25.2 ± 6.9%, respectively. The total number of hemocytes varies in a wide range from 820 to 5510 cell/µL, with the average number of cells being 2707 ± 1096 cell/µL. The proportion of transparent cells averages 18.2 ± 3.8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Johansson MW, Keyser P, Sritunyalucksana K, Söderhäll K (2000) Crustacean haemocytes and haematopoiesis. Aquaculture 191(1–3): 45–52. https://doi.org/10.1016/s0044-8486(00)00418-x

    Article  CAS  Google Scholar 

  2. Cerenius L, Jiravanichpaisal P, Liu H, Söderhäll I (2010) Crustacean Immunity. In: Söderhäll K (ed) Invertebrate Immunity. Advanc Experiment Med Biol. Springer, Boston; MA, 708. https://doi.org/10.1007/978-1-4419-8059-5_13

    Chapter  Google Scholar 

  3. Alexandrova EH, Kovatcheva NP (2010) In life determination of the physiological status of decapod crustaceans (Crustacea: Decapoda) by hematological characteristics. Prog Physiol Sci 41(2): 51–67. (In Russ).

    Google Scholar 

  4. Kovatcheva NP, Aleksandrova EN (2010) Hematological parameters as an indicators of physiological status of the decapods: red king crab Paralithodes camttshaticus and freshwater crayfish genus Astacus and Pontastacus. VNIRO Publishing, Moscow. (In Russ).

    Google Scholar 

  5. Adzhiev DD, Pronina GI, Ivanov AA, Koryagina NYu (2018) Functional indicators of poikilothermic aquatic species from natural and artificial water biocenoses. Sel’skokhoz biol 53(2): 337–347. https://doi.org/10.15389/agrobiology.2018.2.337rus

    Article  Google Scholar 

  6. Ivanov AA, Pronina GI, Koryagina NYu, Revyakin AO (2013) Internal environment homeostasis of hydrobionts: specific peculiarities of cold-blooded animals. Izvest Timiryazev Agricult Acad 3: 75–88 (In Russ).

    Google Scholar 

  7. Pronina GI, Koryagina NYu (2014) Comprehensive intravital physiological assessment of crayfishes in aquaculture. Theor Appl Probl Agro-industrial Complex 4: 46–48. (In Russ).

    Google Scholar 

  8. Roulston C, Smith VJ (2011) Isolation and in vitro characterisation of prohaemocytes from the spider crab, Hyas araneus (L.). Devel Comparat Immunol 35(5): 537–544. https://doi.org/10.1016/j.dci.2010.12.012

    Article  Google Scholar 

  9. Mix MC, Sparks AK (1980) Hemocyte classification and differential counts in the dungeness crab, Cancer magister. J Invertebr Pathol 35(2): 134–143. https://doi.org/10.1016/0022-2011(80)90176-7

    Article  Google Scholar 

  10. Sternshein DJ, Burton PR (1980) Light and electron microscopic studies of crayfish hemocytes. J Morphol 165(1): 67–83. https://doi.org/10.1002/jmor.1051650107

    Article  Google Scholar 

  11. Martin GG, Graves BL (1985) Fine structure and classification of shrimp hemocytes. J Morphol 185: 339–348. https://doi.org/10.1002/jmor.1051850306

    Article  Google Scholar 

  12. Tsing A, Arcier J-M, Brehélin M (1989) Hemocytes of Penaeid and Palaemonid shrimps: Morphology, cytochemistry, and hemograms. J Invertebr Pathol 53(1): 64–77. https://doi.org/10.1016/0022-2011(89)90075-x

    Article  Google Scholar 

  13. Hose JE, Martin GG, Gerard AS (1990) A decapod hemocyte classification scheme integrating morphology, Cytochemistry, and Function. Biol Bull 178(1): 33–45. https://doi.org/10.2307/1541535

    Article  CAS  Google Scholar 

  14. Jussila J (1997) Physiological responses of Astacid and Parastacid Crayfishes (Crustacea: Decapoda) to conditions of intensive culture. doc. dissertation. Perth: University of Kuopio.

    Google Scholar 

  15. Hijran YY, Hasan HA (2002) Haemocyte Classification and Differential Counts in the Freshwater Crab, Potamon fluviatilis. Tukr J Vet Anim Sci 26: 403–406.

    Google Scholar 

  16. Zhang ZF, Shao M, Kang KH (2006) Classification of haematopoietic cells and haemocytes in Chinese prawn Fenneropenaeus chinensis. Fish and Shellfish Immunol 21: 159–169. https://doi.org/10.1016/j.fsi.2005.11.003

    Article  CAS  Google Scholar 

  17. Giulianini PG, Bierti M, Lorenzon S, Battistella S, Ferrero EA (2007) Ultrastructural and functional characterization of circulating hemocytes from the freshwater crayfish Astacus leptodactylus: Cell types and their role after in vivo artificial non-self challenge. Micron 38(1): 49–57. https://doi.org/10.1016/j.micron.2006.03.019

    Article  CAS  Google Scholar 

  18. Li C, Shields JD (2007) Primary culture of hemocytes from the Caribbean spiny lobster, Panulirus argus, and their susceptibility to Panulirus argus Virus 1 (PaV1). J Invertebr Pathol 94(1): 48–55. https://doi.org/10.1016/j.jip.2006.08.011

    Article  CAS  Google Scholar 

  19. Taylor S, Landman MJ, Ling N (2009) Flow сytometric characterization of freshwater crayfish hemocytes for the examination of physiological status in wild and captive animals. Journal of Aquatic Animal Health 21(3): 195–203. https://doi.org/10.1577/h09-003.1

    Article  Google Scholar 

  20. Ding ZZ, Du JJ, Ou JJ, Li WW, Wu TT, Xiu YY, Meng QQ, Ren QQ, Gu WW, Xue HH, Tang JJ, Wang WW (2012) Classification of circulating hemocytes from the red swamp crayfish Procambarus clarkii and their susceptibility to the novel pathogen Spiroplasma eriocheiris in vitro. Aquaculture 356: 371–380. https://doi.org/10.1016/j.aquaculture.2012.04.042

    Article  CAS  Google Scholar 

  21. Du J, Zhu H, Ren Q, Liu P, Chen J, Xiu Y, Yao W, Meng Q, Gu W, Wang W (2012) Flow cytometry studies on the Macrobrachium rosenbergii hemocytes sub-populations and immune responses to novel pathogen spiroplasma MR-1008. Fish and Shellfish Immunol 33(4): 795–800. https://doi.org/10.1016/j.fsi.2012.07.006

    Article  CAS  Google Scholar 

  22. Lv SS, Xu JJ, Zhao JJ, Yin NN, Binjie Lu B, Li SS, Chen YY, Xu HH (2014) Classification and phagocytosis of circulating haemocytes in Chinese mitten crab (Eriocheir sinensis) and the effect of extrinsic stimulation on circulating haemocytes in vivo. Fish and Shellfish Immunol 39(2): 415–422. https://doi.org/10.1016/j.fsi.2014.05.036

    Article  CAS  Google Scholar 

  23. Battison A, Cawthorn R, Horney B (2003) Classification of Homarus americanus hemocytes and the use of differential hemocyte counts in lobsters infected with Aerococcus viridans var. homari (Gaffkemia). J Invertebr Pathol 84(3): 177–197. https://doi.org/10.1016/j.jip.2003.11.005

    Article  Google Scholar 

  24. Lagutkina LYu, Ponomarev SV (2008) New object of aquaculture—australian redclaw crayfish (Cherax quadricarinatus). Vestnik AGTU 6: 220–223. (In Russ).

    Google Scholar 

  25. Lagutkina LYu, Kuzmina EG, Taranina AA, Ahmedzhanova AB, Yasinskij VS, Ponomarev RA (2020) Factual support of practices to increase the efficiency of cultivation of tropical freshwater species. Bulletin of the Astrakhan State Technical University. Series: Fisheries 2: 94–105. https://doi.org/10.24143/2073-5529-2020-2-94-105

    Article  Google Scholar 

  26. Lagutkina LYu, Kuzmina EG, Taranina AA, Ahmedzhanova AB, Yasinskij VS, Ponomarev RA (2020) Factual support of practices to increase the efficiency of cultivation of tropical freshwater species. Bull Astrakhan State Techn Univers Series: Fisheries 2: 94–105. https://doi.org/10.24143/2073-5529-2020-2-94-105

    Article  Google Scholar 

  27. Li F, Zheng Z, Li H, Fu R, Xu L, Yang F (2021) Crayfish hemocytes develop along the granular cell lineage. Sci Rep 11(1): 13099. https://doi.org/10.1038/s41598-021-92473-9

    Article  CAS  Google Scholar 

  28. Duan H, Jin S, Zhang Y, Li F, Xiang J (2014) Granulocytes of the red claw crayfish Cherax quadricarinatus can endocytose beads, E. coli and WSSV, but in different ways. Develop and Compar Immunol 46(2): 186–193. https://doi.org/10.1016/j.dci.2014.04.006

    Article  CAS  Google Scholar 

  29. Li F, Chang X, Xu L, Yang F (2018) Different roles of crayfish hemocytes in the uptake of foreign particles. Fish and Shellfish Immunol 77: 112–119. https://doi.org/10.1016/j.fsi.2018.03.029

    Article  CAS  Google Scholar 

  30. Li F, Xu L, Hui X, Huang W, Yang F (2019) Directed differentiation of granular cells from crayfish hematopoietic tissue cells. Fish and Shellfish Immunol 88: 28–35. https://doi.org/10.1016/j.fsi.2019.02.054

    Article  CAS  Google Scholar 

  31. Zhu K, Yang F, Li F (2022) Molecular markers for hemocyte subpopulations in crayfish Cherax quadricarinatus. Devel and Comparat Immunol 132: 104407. https://doi.org/10.1016/j.dci.2022.104407

    Article  CAS  Google Scholar 

  32. Mauro M, Arizza V, Arculeo M, Attanzio A, Pinto P, Chirco P, Badalamenti G, Tesoriere L, Vazzana M (2022) Haemolymphatic Parameters in Two Aquaculture Crustacean Species Cherax destructor (Clark, 1836) and Cherax quadricarinatus (Von Martens, 1868). Animals 12(5): 543. https://doi.org/10.3390/ani12050543

    Article  Google Scholar 

  33. Lagutkina LYu, Evgrafova EM, Kuzmina EG, Mazlov AM (2021) Hematological and biochemical indicators of Australian red-claw crayfish hemolymph. Bulletin of the Astrakhan State Technical University. Series: Fishing Industry 2: 134–143. https://doi.org/10.24143/2073-5529-2021-2-134-143

    Article  Google Scholar 

  34. Wentao Z, Wen L, Yunlong Z, Danli W, Zhongxiang M, Getao S (2017) Ultrastructural and immunocytochemical analysis of circulating hemocytes from Cherax quadricarinatus (von Martens, 1868). Indian J Anim Res 51(1): 129–134. https://doi.org/10.18805/ijar.v0iOF.6823

    Article  Google Scholar 

  35. Romero X, Turnbull JF, Jiménez R (2000) Ultrastructure and Cytopathology of a Rickettsia-like Organism Causing Systemic Infection in the Redclaw Crayfish, Cherax quadricarinatus (Crustacea: Decapoda), in Ecuador. J Invertebr Pathol 76(2): 95–104. https://doi.org/10.1006/jipa.2000.4952

    Article  CAS  Google Scholar 

  36. Sánchez-Salgado JL, Pereyra MA, Agundis C, Calzada-Ruiz M, Kantun-Briceño E, Zenteno E (2019) In vivo administration of LPS and β-glucan generates the expression of a serum lectin and its cellular receptor in Cherax quadricarinatus. Fish and Shellfish Immunol 94: 10–16. https://doi.org/10.1016/j.fsi.2019.08.061

    Article  CAS  Google Scholar 

  37. Wu D-L, Liu Z-Q, Huang Y-H, Lv W-W, Chen M-H, Li Y-M, Zhao Y-L (2018) Effects of cold acclimation on the survival, feeding rate, and non-specific immune responses of the freshwater red claw crayfish (Cherax quadricarinatus). Aquacult Internat 26(2): 557–567. https://doi.org/10.1007/s10499-018-0236-4

    Article  CAS  Google Scholar 

  38. Paterson BD, Spanogle PT, Davidson GW, Hosking W, Nottingam S, Jussila J, Evans LH (2005) Prediction survival of western rock lobster Panuluris cygnus, using discriminant analysis of hemolymph parameters taken immediately following simulated handling treatments. New Zealand J Marine Freshwat Res 39(5): 1129–1143. https://doi.org/10.1080/00288330.2005.9517380

    Article  Google Scholar 

  39. Lin X, Söderhäll I (2011) Crustacean hematopoiesis and the astakine cytokines. Blood 117(24): 6417–6424. https://doi.org/10.1182/blood-2010-11-320614

    Article  CAS  Google Scholar 

  40. Sukhachev AN, Dyachkov IS, Romanyuk DS, Kumeyko VV, Sinitsina VF, Korolkova ED, Kharazova AD, Polevshchikov AV (2013) Morphological analysis of hemocytes of ascidian Halocynthia aurantium. Cell Tiss Biol (Tsitologiya) 55(12): 901–906.

  41. Ghiretti-Magaldi A, Milanesi C, Tognon G (1977) Hemopoiesis in crustacea decapoda: origin and evolution of hemocytes and cyanocytes of Carcinus maenas. Cell Different 6(3–4): 167–186. https://doi.org/10.1016/0045-6039(77)90014-8

    Article  Google Scholar 

  42. Martynova MG, Bystrova OA, Parfenov VN (2008) Synthesis of nucleic acids and localization of atrial natriuretic peptide in the crayfish haemocytes. Cell Tiss Biol (Tsitologiya) 50(3): 243–248. (In Russ).

  43. Van de Braak CBT, Botterblom MHA, Liu W, Taverne N, van der Knaap WPW, Rombout JHWM (2002) The role of the haematopoietic tissue in haemocyte production and maturation in the black tiger shrimp (Penaeus monodon). Fish and Shellfish Immunol 12(3): 253–272. https://doi.org/10.1006/fsim.2001.0369

    Article  CAS  Google Scholar 

  44. Ivanov AA, Pronina GI, Koryagina NYu (2021) Physiology of hydrobionts. Lan, SPB. (In Russ).

    Google Scholar 

  45. Xu X, Duan H, Shi Y, Xie S, Song Z, Jin S, Li F, Xiang J (2018) Development of a primary culture system for haematopoietic tissue cells from Cherax quadricarinatus and an exploration of transfection methods. Develop and Comparat Immunol 88: 45–54. https://doi.org/10.1016/j.dci.2018.07.006

    Article  CAS  Google Scholar 

  46. Pronina GI, Koryagina NYu (2015) Reference values of physiological and immunological parameters of hydrobionts of different species. Bulletin of the Astrakhan State Technical University; Series: Fisheries 4: 103–108. (In Russ).

    Google Scholar 

  47. Liu YT, Chang CI, Hseu JR, Liu KF, Tsai JM (2013) Immune responses of prophenoloxidase and cytosolic manganese superoxide dismutase in the freshwater crayfish Cherax quadricarinatus against a virus and bacterium. Molec Immunol 56(1–2): 72–80. https://doi.org/10.1016/j.molimm.2013.03.023

    Article  CAS  Google Scholar 

  48. Bone JWP, Renshaw GMC, Furse JM, Wild CH (2014) Using biochemical markers to assess the effects of imposed temperature stress on freshwater decapod crustaceans: Cherax quadricarinatus as a test case. J Compar Physiol B 185(3): 291–301. https://doi.org/10.1007/s00360-014-0883-3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D.N.S.—conceptualization, experimental design, data collection and processing, writing and editing the manuscript; D.V.Sh.—data processing, writing and editing the text.

Corresponding author

Correspondence to D. N. Skafar.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All applicable international principles on the use of laboratory animals were observed during the study. In view of the work with invertebrates, the ethical standards formulated in the Universal Declaration of Animal Rights were not violated.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2022, Vol. 58, No. 6, pp. 507–519https://doi.org/10.31857/S0044452922060109.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skafar, D.N., Shumeiko, D.V. Hemocytes of the Australian Red Claw Crayfish (Cherax quadricarinatus): Morphology and Hemogram. J Evol Biochem Phys 58, 1730–1743 (2022). https://doi.org/10.1134/S0022093022060060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022060060

Keywords:

Navigation