Skip to main content
Log in

Suppressor-dependent frameshift mutants of bacteriophage P22

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Fourteen frameshift mutants of bacteriophage P22 have been isolated following mutagenesis by ICR-191. These mutants can grow only in hosts carrying a frameshift suppressor. Two of the mutants will grow on strains carrying sufA, the most efficient of the three suppressors which read the four base codon CCC·. Twelve other phage mutants can grow only in strains carrying the sufD suppressor, which reads the codon GGG·.

The fourteen frameshift mutations map at eight sites in the P22 genetic map. Only five P22 genes are affected: 12, 23, 2, 10 and 9. The non-random distribution of sites may be due to hot spots for frameshift mutagenesis. The low efficiency of frameshift suppressors may limit detectable frameshift mutations to genes for which a low product level still permits plaque formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames, B. N., Whitfield, H. J., Jr.: Frameshift mutagenesis in Salmonella. Cold Spr. Harb· Symp. quant. Biol. 31, 221–225 (1966)

    Google Scholar 

  • Atkins, J., Ryce, S.: UGA and non-triplet suppression of the genetic code. Nature (Lond.) 249, 527–531 (1974)

    Google Scholar 

  • Botstein, D., Waddell, C. H., King, J.: Mechanism of head assembly and DNA encapsulation in Salmonella phage P22. I. Genes, proteins, structures and DNA maturation. J. molec. Biol. 80, 669–695 (1973)

    Google Scholar 

  • Chan, R. K., Botstein, D.: Genetics of bacteriophage P22. I. Isolation of prophage deletions which affect immunity to superinfection. Virology 49, 257–267 (1972)

    Google Scholar 

  • Fink, G. R., Klopotowski, R., Ames, B. N.: Histidine regulatory mutants in Salmonella typhimurium. IV. A positive selection for polar histidine mutants. J. molec. Biol. 30, 81–95 (1967)

    Google Scholar 

  • Hershey, A. D., Chase, M.: Independent function of viral protein and nucleic acid in growth of bacteriophage. J. gen. Physiol. 36, 38–56 (1952)

    Google Scholar 

  • Israel, V.: The production of inactive phage P22 particles following induction. Virology 33, 317–322 (1967)

    Google Scholar 

  • King, J., Lenk, E. V., Botstein, D.: Mechanism of head assembly and DNA encapsulation in Salmonella phage P22. II. Morphogenetic pathway. J. molec. Biol. 80, 697–731 (1973)

    Google Scholar 

  • Lanni, F., Lanni, Y. T.: Genetic suppressors of bacteriophage T5 amber mutants. J. Bact. 92, 521–523 (1966)

    Google Scholar 

  • Lew, K. K., Roth, J. R.: Recessive-lethal nonsense suppressors in Salmonella typhimurium. J. molec. Biol. 59, 63–75 (1971)

    Google Scholar 

  • Murray, M. L., Hartman, P.: Overproduction of hisH and hisF gene products leads to inhibition of cell division in Salmonella. Canad. J. Microbiol. 18, 671–681 (1972)

    Google Scholar 

  • Newton, A.: Isolation and characterization of frameshift mutations in the lac operon. J. molec. Biol. 49, 589–601 (1970)

    Google Scholar 

  • Oeschger, N., Hartman, P. E.: ICR-induced frameshift mutations in the histidine operon of Salmonella. J. Bact. 101, 490–504 (1970)

    Google Scholar 

  • Osborn, M., Person, S., Phillips, S., Funk, F.: A determination of mutagenic specificity in bacteria using nonsense mutants of bacteriophage T4. J. molec. Biol. 26, 437–447 (1967)

    Google Scholar 

  • Reeves, R., Roth, J. R.: A recessive UGA suppressor. J. molec. Biol. 56, 523–533 (1971)

    Google Scholar 

  • Riddle, D., Carbon, J.: A nucleotide addition in the anti-codon of a glycine tRNA. Nature (Lond.) New Biol. 242, 230–237 (1973)

    Google Scholar 

  • Riddle, D., Roth, J.: Suppressors of frameshift mutations in Salmonella typhimurium. J. molec. Biol. 54, 131–144 (1970)

    Google Scholar 

  • Riddle, D., Roth, J.: Frameshift suppressors. II. Genetic mapping and dominance studies. J. molec. Biol. 66, 483–493 (1972a)

    Google Scholar 

  • Riddle, D., Roth, J.: Frameshift suppressors. III. Effects of suppressor mutations on transfer RNA. J. molec. Biol. 66, 495–506 (1972b)

    Google Scholar 

  • Roth, J.: Frameshift mutations. Ann. Rev. Genet., in press (1974)

  • Soll, L., Berg, P.: Recessive lethals: A new class of nonsense suppressors in Escherichia coli. Genetics 63, 392–399 (1969)

    Google Scholar 

  • Thomas, R., Leurs, C., Dambly, C., Parmentier, D., Lambert, L., Brachet, P., Lefebvre, N., Mousset, S., Porcheret, J., Szpirer, J., Wauters, D.: Isolation and characterization of new sus (amber) mutants of bacteriophage λ. Mutation Res. 4, 735–741 (1967)

    Google Scholar 

  • Yourno, J.: Similarity of cross-supressible frameshifts in Salmonella typhimurium. J. molec. Biol. 62, 223–231 (1971)

    Google Scholar 

  • Yourno, J.: Externally suppressible +1 “glycine” frameshift: Possible quadruplet isomers for glycine and proline. Nature (Lond.) New Biol. 239, 219–221 (1972)

    Google Scholar 

  • Yourno, J., Barr, D., Tanemura, S.: Externally suppressible frameshift mutant of Salmonella typhimurium. J. Bacteriol. 100, 453–459 (1969)

    Google Scholar 

  • Yourno, J., Health, S.: Nature of the hisD3018 frameshift mutation in Salmonella typhimurium. J. Bacteriol. 100, 460–468 (1969)

    Google Scholar 

  • Yourno, J., Kohno, T.: Externally suppressible proline quadruplet CCC·. Science 175, 600–652 (1972)

    Google Scholar 

  • Yourno, J., Tanemura, S.: Restoration of in-phase translation by an unlinked suppressor of a frameshift mutation in Salmonella typhimurium. Nature 225, 422–426 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. Maas

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uomini, J.R., Roth, J.R. Suppressor-dependent frameshift mutants of bacteriophage P22. Molec. Gen. Genet. 134, 237–247 (1974). https://doi.org/10.1007/BF00267718

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00267718

Keywords

Navigation