Skip to main content
Log in

Physico-chemical and thermodynamic properties of monomeric Concanavalin a

  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

An alkylated monomer of Concanavalin A was prepared photochemically according to the method of Tanaka et al. (1981). Its affinities for methyl-α-d-gluco, methyl-α-d-manno and p-nitro-phenyl-α-d-manno pryranoside were calculated. The enthalpies of these binding reactions were measured calorimetrically and the thermodynamic parameters were calculated. The values obatined suggest that the structure of the monomer differs from that of the dimeric and tetrameric molecules.

Calorimetric studies also showed that the monomeric derivative reacts with IgM but not IgG. The enthalpy per binding site in the monomer-IgM reaction is equal to that of the monomer-mannose derivative reaction; mannose is the terminal residue of the saccharide chains of the IgM molecule. The stoichiometry of the reaction is ten ConA-m per IgM molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey DB, Ellis PD, Cardin AD, Bhenke WD (1978) Cadmium-113 nuclear magnetic resonance studies of metalloprotein. 1. Concanavalin A. J Am Chem Soc 100: 5236–5237

    Google Scholar 

  • Bolen DW, Flogel M, Biltonen RL (1971) Calorimetric studies of protein-inhibitor interaction. Biochemistry 10: 4136–4144

    Google Scholar 

  • Brewer CF, Sternlicht H, Marcus DM, Grollman AP (1973) Binding of 13C-enriched methyl-α-d-glucopyranoside to Concanavalin A as studied by carbon magnetic resonance. Proc Natl Acad Sci USA 70:1007–1011

    Google Scholar 

  • Christie DJ, Alter GM, Magnuson JA (1978) Saccharide binding to transition metal ion free Convanavalin A. Biochemistry 17:4425–4430

    Google Scholar 

  • Cooper A (1976) Thermodynamic fluctuations in protein molecules. Proc Natl Acad Sci USA 73:2740–2741

    Google Scholar 

  • Cunningham BA, Wang JL, Pflumm MN, Edelman GM (1972) Isolation and proteolytic cleavage of the intact subunit of Concanavalin A. Biochemistry 11:3233–3239

    Google Scholar 

  • Dani M, Manca F, Rialdi G (1981) Calorimetric study of Concanavalin A binding to saccharides. Biochim Biophys Acta 667:108–117

    Google Scholar 

  • Dani M, Manca F, Rialdi G (1982) Calorimetric study of the binding reaction of Concanavalin A with immunoglobulins. Mol Immunol 19:907–911

    Google Scholar 

  • Doyle RJ, Thomasson DL, Gray RD, Glew RH (1975) Spectral changes accompanying the interaction between metal ligands and Concanavalin A. FEBS Lett 52:185–187

    Google Scholar 

  • Edelman GM, Cunningham BA, Reeke GN, Becker JW, Waxdal MJ, Wang JL (1972) The covalent and three dimensional structure of Concanavalin A. Proc Natl Acad Sci USA 69:2580–2584

    Google Scholar 

  • Eftink M, Biltonen RL (1980) Thermodynamics of interacting biological systems. In: Beezer AE (ed) Biological microcalorimetry. Academic Press, London, pp 343–412

    Google Scholar 

  • Eisenberg D, Kauzman W (1969) The structure and properties water. Oxford University Press, Oxford, p 174

    Google Scholar 

  • Fahey JL, Terry EW (1973) Ion exchange chromatography and gel filtration. In: Weir DM (ed) Handbook of experimental immunology. Blackwell Scientific Publ Oxford, pp 19–43

    Google Scholar 

  • Fraser AR, Wang JL, Edelman GM (1976) Formation of hybrid Concanavalin A molecules by subunit exchange. J Biol Chem 251:4622–4628

    Google Scholar 

  • Grimaldi JJ, Sykes BD (1975) Concanavalin A: A stopped flow NMR study of conformational changes induced by Mn++, Ca++ and methyl-α-d-mannoside. J Biol Chem 250: 1618–1624

    Google Scholar 

  • Hamada T, Yonemitsu O (1977) Photoalkylation of aromatic amino acids as a model of photochemical modification of proteins with chloroacetamide. Chem Pharm Bull (Tokyo) 25:271–275

    Google Scholar 

  • Herskovits TT, Jacobs R, Nag K (1983) The effects of salt and ureas on the subunit dissociation of Concanavalin A. Biochim Biophys Acta 742:142–154

    Google Scholar 

  • Johannean J, Bourillon R (1976) Human pathologic IgM glycopeptides. Evidence for a very hight mannose content glycopeptide. Immunochemistry 13:991–993

    Google Scholar 

  • Jolicoeur C, Desnoyers JE (1983) Ionic solvation. In: Conway B, Bockris JO'M, Yaage E (eds) Comprehensive teeatise of electrochemistry, Vol 5. Plenum Press, New York, pp 1–109

    Google Scholar 

  • Lay CY (1977) Detection of peptides by fluorescence methods. Methods Enzymol 49:236–240

    Google Scholar 

  • Leach SJ, Scheraga HA (1960) Effect of light scattering on ultraviolet difference spectra. J Am Chem Soc 82: 4790–4792

    Google Scholar 

  • Lumry R, Biltonen RL (1969) Thermodynamic and kinetic aspects of protein conformation in relation to physiological function. In: Timasheff SN, Fasman GD (eds) Structure and stability of biological macromolecules, Marcel Dekker, New York, pp 65–112

    Google Scholar 

  • Lumry R, Rosenberg A (1976) The mobile defect hypothesis of protein function. In: Alfsen A, Berteaud AJ (eds) L'eau et les systemes biologiques. CNRS, Paris, pp 53–62

    Google Scholar 

  • Lumry R, Battistel E, Jolicoeur C (1982) Geometric relaxation in water. Faraday Symp Chem Soc 17:93–108

    Google Scholar 

  • McKenzie GH, Sawyer WH (1973) The binding properties of dimeric and tetrameric Concanavalin A. J Biol Chem 248: 549–556

    Google Scholar 

  • Monk P, Wadso I (1969) Flow calorimetry as an analytical tool in biochemistry and related areas. Acta Chem Scand [B] 23:29–36

    Google Scholar 

  • Munske GR, Magnuson JA, Krakauer H (1978) A conformational change in Concanavalin A detected by a calorimetric study of the binding of methyl-α-d-mannopyranoside. Biochem Biophys Res Commun 84:684–690

    Google Scholar 

  • Munske GR, Krakauer H, Magnuson JA (1984) Calorimetric Study of Carbohydrate binding to Concanavalin A. Arch Biochem Biophys 233:582–587

    Google Scholar 

  • Nicolson GL (1976): Bittinger H, Schnebli HP (eds) Concanavalin A as a tool. John Wiley & Sons Publ. New York, pp 3–7

    Google Scholar 

  • Ouchterlony O, Nillsom I (1973) Immunodiffusion and immunoelectrophoresis. In: Weir DM (ed) handbook of experimental immunology. Blackwell Scientific Publ, Oxford, pp 655–706

    Google Scholar 

  • Pflumm MN, Wang JL, Edelman GM (1971) Conformational changes in Concanavalin A. J Biol Chem 246:4369–4375

    Google Scholar 

  • Reeke GN, Becker JW, Edelman GM (1975) The covalent and three dimensional structure of Concanavalin A. J Biol Chem 250:1525–1547

    Google Scholar 

  • Senear DF, Teller DC (1981) Thermodynamics of Concanavalin A dimer-tetramer selfassociation: sedimentation equilibrium studies. Biochemistry 20:3076–3083

    Google Scholar 

  • Sitrin RD, Antell L, Griswold DE, Bender PE, Greig RG, Poste G (1982) A High performance liquid chromatography assay for the rapid analysis of the subunit content of Concanavalin A. Biochim Biophys Acta 717:175–178

    Google Scholar 

  • Sophianopoulos AJ, Sophianopoulos JA (1982) Reversible dissociation of Concanavalin A into monomers by 2-propanol. Arch Biochem Biophys 217:751–754

    Google Scholar 

  • Tait MJ, Suggett A, Franks F, Ablett S, Quickendem PA (1972) Hydration of monosaccharides: a study by dielectric and nuclear magnetic relaxation. J Solution Chem 1: 131–151

    Google Scholar 

  • Tanaka I, Abe Y, Hamada T, Yonemitsu O, Ishii S (1981) Monovalent monomer derivative of Concanavalin A produced by photochemically induced alkylation. J Biochem 89:1643–1646

    Google Scholar 

  • Toselli M, Battistel E, Manca F, Rialdi G (1981) Calorimetric study of manganese binding to Concanavalin A. Biochim Biophys Acta 667:99–107

    Google Scholar 

  • Wang JL, Cunningham BA, Edelman GM (1971) Unusual fragments in the subunit structure of Concanavalin A. Proc Natl Acad Sci USA 68:1130–1134

    Google Scholar 

  • White S (1975) The molecular dissociation of ferrihemoglobin derivatives. J Biol Chem 250:1263–1268

    Google Scholar 

  • Wiesinger H, Bartholmes P, Hinz HJ (1979) Subunit interactions in Tryptophan Synthase of Escherichia coli: calorimetric studies on association of α and β 2 subunits. Biochemistry 18:1979–1984

    Google Scholar 

  • Williams TJ, Shafer JA, Goldstein IJ, Adamson T (1978) Heterogeity of Concanavalin A as detected by its binding to p-nitrophenyl 2-O-α-d-mannopyranosyl-β-d-mannopyranoside. J Biol Chem 253:8533–8537

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battistel, E., Lazzarini, G., Manca, F. et al. Physico-chemical and thermodynamic properties of monomeric Concanavalin a. Eur Biophys J 13, 1–9 (1985). https://doi.org/10.1007/BF00266304

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00266304

Key words

Navigation