Skip to main content
Log in

Streamwise pseudo-vortical structures and associated vorticity in the near-wall region of a wall-bounded turbulent shear flow

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Streamwise pseudo-vortical motions near the wall in a fully-developed two-dimensional turbulent channel flow are clearly visualized in the plane perpendicular to the flow direction by a sophisticated hydrogen-bubble technique. This technique utilizes partially insulated fine wires, which generate hydrogen-bubble clusters at several distances from the wall. These flow visualizations also supply quantitative data on two instantaneous velocity components, ν and w, as well as the streamwise vorticity, ω x . The vorticity field thus obtained shows quasi-periodicity in the spanwise direction and also a double-layer structure near the wall, both of which are qualitatively in good agreement with a pseudo-vortical motion model of the viscous wall-region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C i ,c i ,d i :

constants in Eqs. (2), (3) and (4)

H :

channel width (m)

Re H :

Reynolds number (= U c H/ν)

Re θ :

Reynolds number (= U c θ/ν)

T :

period (s)

t :

time (s)

U :

mean streamwise velocity (m/s)

U c :

center-line velocity (m/s)

u τ :

friction velocity (m/s)

u, ν, w :

velocity fluctuations (m/s)

x, y, z :

coordinates (m)

δ* :

displacement thickness (m)

θ:

momentum thickness (m)

λ:

mean low-speed streak spacing (m)

ν:

kinematic viscosity (m2/s)

φ:

phase difference

ω x :

streamwise vorticity fluctuation (1/s)

( )+ :

normalized by u τ and ν

():

root mean square value

():

statistical average

References

  • Bakewell Jr., H. P.; Lumley, J. L. 1967: Viscous sublayer and adjacent wall region in turbulent pipe flow. Phys. Fluids 10, 1880–1889

    Google Scholar 

  • Blackwelder, R. F.; Eckelmann, H. 1979: Streamwise vortices associated with the bursting phenomenon. J. Fluid Mech. 94, 577–594

    Google Scholar 

  • Blackwelder, R. F. 1983: Analogies between transitional and turbulent boundary layers. Phys. Fluids 26, 2807–2815

    Google Scholar 

  • Bremhorst, K.; Walker, T. B. 1973: Spectral measurements of turbulent momentum transfer in fully developed pipe flow. J. Fluid Mech. 61, 173–186

    Google Scholar 

  • Campbell, J. A.; Hanratty, T. J. 1981: The mechanism of turbulent mass transfer at a boundary. Proc. 3rd Symp. Turbulent Shear Flows, pp. 10.13–10.17. Davis: University of California

    Google Scholar 

  • Clark, J. A. 1968: A study of incompressible turbulent boundary layers in channel flow. Trans. ASME Ser. D 90, 455–468

    Google Scholar 

  • Coles, D. 1978: A model for flow in the viscous sublayer. In: AFOSR/Lehigh workshop on coherent structure of turbulent boundary layers (ed. Smith, C. R.; Abbott, D. E.). pp. 462–475. Bethlehem: Lehigh University

    Google Scholar 

  • Comte-Bellot, G. 1965: Ecoulement turbulent entre deux parois parallèles. Publications scientifiques et techniques. Nr. 419. Paris: Ministère de l'air

    Google Scholar 

  • Eckelmann, H. 1974: The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow. J. Fluid Mech. 65, 439–459

    Google Scholar 

  • Fortuna, G.; Hanratty, T. J. 1972: The influence of drag-reducing polymers on turbulence in the viscous sublayer. J. Fluid Mech. 53, 575–586

    Google Scholar 

  • Gupta, A. K.; Kaplan, R. E. 1972: Statistical characteristics of Reynolds stress in a turbulent boundary layer. Phys. Fluids 15, 981–985

    Google Scholar 

  • Hatziavramidis, D. T.: Hanratty, T. J. 1979: The representation of the viscous wall region by a regular eddy pattern. J. Fluid Mech. 95, 655–679

    Google Scholar 

  • Hirata/Kasagi Laboratory 1984: Flow visualization of a twodimensional turbulent channel flow (16 mm motion picture). Tokyo: Department of Mechanical Engineering, University of Tokyo

    Google Scholar 

  • Hirata, M.; Tanaka, H.; Kawamura, H.; Kasagi, N. 1982: Heat transfer in turbulent flows. In: Heat Transfer 1982 (Proc. 7th Int. Heat Transfer Conf.). Vol. 1, pp. 31–57. Washington D. C.: Hemisphere

    Google Scholar 

  • Hishida, M.; Nagano, Y.; Morimoto, Y. 1980: Structure of pipe flow turbulence (1st Rep., characteristics of velocity fluctuations and Reynolds stress). Trans. JSME Ser. B 46, 1455–1466

    Google Scholar 

  • Hishida, M.; Nagano, Y.; Tagawa, M.; Miyakawa, H. 1984: Turbulent heat transfer associated with coherent structures in fully developed pipe flow. Trans. JSME Ser. B 50, 537–542

    Google Scholar 

  • Hogenes, J. H. A.; Hanratty, T. J. 1982: The use of multiple wall probes to identify coherent flow patterns in the viscous wall region. J. Fluid Mech. 124, 363–390

    Google Scholar 

  • Hussain, A. K. M. F.; Reynolds, W. C. 1975: Measurements in fully developed turbulent channel flow. J. Fluids Eng. 97, 568–580

    Google Scholar 

  • Iritani, Y; Kasagi, N.; Hirata, M. 1983 a: Direct velocity measurement in low-speed water flows by double-wire hydrogenbubble technique. Exp. Fluids 1, 111–112

    Google Scholar 

  • Iritani, Y.; Kasagi, N.; Hirata, M. 1983b: Heat transfer mechanism and associated turbulence structure in the near-wall region of a turbulent boundary layer. In: Turbulent shear flows IV (ed. Bradbury, L. J. S.; Durst, F.; Launder, B. E.; Schmidt, F. W.; Whitelaw, J. H.), pp. 223–234. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Iritani, Y.; Kasagi, N.; Hirata, M. 1985: Streaky structure in a two-dimensional turbulent channel flow. Trans. JSME. Ser. B 51, 3092–3101

    Google Scholar 

  • Johansson, A. V.; Alfredsson, P. H. 1982: On the structure of turbulent channel flow. J. Fluid Mech. 122, 295–314

    Google Scholar 

  • Kasagi, N.; Suzuki, M.; Hirata, M. 1984: Turbulent convective heat transfer taking into account the wall-side unsteady heat conduction associated with the bursting. Proc. 21st Nat. Heat Transfer Symp., pp. 10–12. Tokyo: Heat Transfer Society of Japan

    Google Scholar 

  • Kastrinakis, E. G.; Eckelmann, H. 1983: Measurement of streamwise vorticity fluctuations in a turbulent channel flow. J. Fluid Mech. 137, 165–186

    Google Scholar 

  • Kastrinakis, E. G.; Wallace, J. M.; Willmarth, W. W. 1975: Measurements of small scale streamwise vorticity in a turbulent channel flow. Bull. Am. Phys. Soc. 20, 1422

    Google Scholar 

  • Kim, J. 1983: On the structure of wall-bounded turbulent flows. Phys. Fluids 26, 2088–2097

    Google Scholar 

  • Klebanoff, P. S. 1954: Characteristics of turbulence in a boundary layer with zero pressure gradient. NACA Rep. 1247

  • Kline, S. J.; McClintock, F. A. 1953: Describing uncertainties in single-sample experiments. Mech. Eng. 75, 3–8

    Google Scholar 

  • Kline, S. J.; Reynolds, W. C.; Schraub, F. A.; Runstadler,P. W. 1967: The structure of turbulent boundary layers. J. Fluid Mech. 30, 741–773

    Google Scholar 

  • Kreplin, H. P.; Eckelmann, H. 1979a: Behavior of the three fluctuating velocity components in the wall region of a turbulent channel flow. Phys. Fluids 22, 1233–1239

    Google Scholar 

  • Kreplin, H. P.; Eckelmann, H. 1979b: Propagation of perturbations in the viscous sublayer and adjacent wall region. J. Fluid Mech. 95, 305–322

    Google Scholar 

  • Laufer, J. 1954: The structure of turbulence in fully developed pipe flow. NACA Rep. 1174

  • Lee, M. K.; Eckelmann, L. D.; Hanratty, T. J. 1974: Identification of turbulent wall eddies through the phase relation of the components of the fluctuating velocity gradient. J. Fluid Mech. 66, 17–33

    Google Scholar 

  • Lu, S. S.; Willmarth, W. W. 1973: Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J. Fluid Mech. 60, 481–511

    Google Scholar 

  • Moffat, R. J. 1982: Contributions to the theory of single-sample uncertainty analysis. J. Fluids Eng. 104, 250–260

    Google Scholar 

  • Moin, P.; Kim, J. 1982: Numerical investigation of turbulent channel flow. J. Fluid Mech. 118, 341–377

    Google Scholar 

  • Patel, V. C.; Head, M. R. 1969: Some observations on skin friction and velocity profiles in fully developed pipe and channel flows. J. Fluid Mech. 38, 181–201

    Google Scholar 

  • Powe, R. E.; Townes, H. W. 1971: Energy relations for turbulent flow in rough pipes. Proc. Symp. Turbulence in Liquids, pp. 123–133. Rolla: University of Missouri-Rolla

    Google Scholar 

  • Purtell, L. P.; Klebanoff, P. S.; Buckley, F. T. 1981: Turbulent boundary layer at low Reynolds number. Phys. Fluids 24, 802–811

    Google Scholar 

  • Schildknecht, M.; Miller, J. A.; Meier, G. E. A. 1979: The influence of suction on the structure of turbulence in fully developed pipe flow. J. Fluid Mech. 90, 67–107

    Google Scholar 

  • Smith, C. R.; Metzler, S. P. 1983: The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J. Fluid Mech. 129, 27–54

    Google Scholar 

  • Smith, C. R.; Schwartz, S. P. 1983: Observation of streamwise rotation in the near-wall region of a turbulent boundary layer. Phys. Fluids 26, 641–652

    Google Scholar 

  • Wallace, J. M. 1983: Private communication

  • Wallace, J. M.; Brodkey, R. S.; Eckelmann, H. 1977: Patternrecognized structures in bounded turbulent shear flows. J. Fluid Mech. 83, 673–693

    Google Scholar 

  • Wyngaard, J. C. 1969: Spatial resolution of the vorticity meter and other hot-wire arrays. Sci. Instrum. 2, 983–987

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasagi, N., Hirata, M. & Nishino, K. Streamwise pseudo-vortical structures and associated vorticity in the near-wall region of a wall-bounded turbulent shear flow. Experiments in Fluids 4, 309–318 (1986). https://doi.org/10.1007/BF00266296

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00266296

Keywords

Navigation