Skip to main content
Log in

Molecular characterization of two stamen-specific genes, tap1 and fil1, that are expressed in the wild type, but not in the deficiens mutant of Antirrhinum majus

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Deficiens, a homeotic gene involved in the genetic control of flower development, codes for a putative transcription factor. Upon mutation of the gene, petals are transformed to sepals and stamens to carpels, indicating that deficiens is essential for the activation of genes required for petal and stamen formation. In a search for putative target genes of deficiens, several stamen- and petal-specific genes were cloned that are expressed in wild type but not in the deficiens globiferamutant. In this report the molecular characterization of two of these genes, tap1 and fil1, is presented. They are transiently expressed during flower development. In situ hybridization data demonstrate that tap1 is expressed in the tapetum of the anthers and fill in the filament of the stamen and at the bases of the petals. Both genes encode small proteins with N-terminal hydrophobic domains suggesting that they are secreted. We discuss possible functions of the gene products and their relationship to the deficiens gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Böhlmann H, Clausen S, Behnke S, Giese H, Hiller C, Reimann-Philipp U, Schrader G, Barkholt V, Apel K (1988) Leaf-specific thionins of barley — a novel class of cell wall proteins toxic to plant-pathogenic fungi and possibly involved in the defense mechanism of plants. EMBO J 7:1559–1565

    Google Scholar 

  • Brown JWS (1986) A catalogue of splice junctions and putative branch point sequences from plant introns. Nucleic Acids Res 14:9549–9560

    Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: Version II. Plant Mol Biol Rep 1:19–23

    CAS  Google Scholar 

  • Domen C, Evrard J-L, Herdenberger F, Pillay DTN, Steinmetz A (1990) Nucleotide sequence of two anther specific cDNAs from sunflower (Helianthus annuus L). Plant Mol Biol 15:643–646

    Google Scholar 

  • Drews GN, Goldberg RB (1989) Genetic control of flower development. Trends Genet 5:256–261

    Google Scholar 

  • Echlin P (1971) The role of the tapetum during microsporogenesis of angiosperms. In: Heslop-Harrison J (ed) Pollen: Development and physiology. Butterworths, London, pp 41–61

    Google Scholar 

  • Frankel R, Izhar S, Nitsan J (1969) Timing of callose activity and cytoplasmic male sterility in Petunia. Biochem Genet 3:451–455

    Google Scholar 

  • Frischauf AM, Lehrach H, Poutska A, Murray N (1983) Lambda replacement vectors carrying polylinker sequences. J Mol Biol 170:827–842

    Google Scholar 

  • Gasser CS, Budelier KA, Smith AG, Shah DM, Fraley RT (1989) Isolation of tissue-specific cDNAs from tomato pistils. Plant Cell 1:15–24

    Google Scholar 

  • Goldberg RB (1988) Plants: Novel developmental processes. Science 240:1460–1467

    Google Scholar 

  • Hayes RE, Senupta P, Cochran BH (1988) The human c-fos serum response factor and the yeast GRM/PRTF have related DNA-binding specificities. Genes Dev 2:1713–1722

    Google Scholar 

  • von Heijne G (1986) A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 14:4683–4690

    PubMed  Google Scholar 

  • Herdenberger F, Evard J-L, Kuntz M, Tessier L-H, Klein A, Steinmetz A, Pillay DTN (1990) Isolation of flower-specific cDNA clones from sunflower. Plant Sci 69:111–122

    Google Scholar 

  • Heslop-Harrison J (1964) Cell walls, cell membranes and protoplasmic connections during meiosis and pollen development. In: Luiskens HF (ed) Pollen physiology and fertilisation. North-Holland, Amsterdam, pp 39–47

    Google Scholar 

  • Joshi CP (1987) An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res 15:6643–6653

    Google Scholar 

  • Kamalay JC, Goldberg RB (1980) Regulation of structural gene expression in tobacco. Cell 19:935–946

    Google Scholar 

  • Kamalay JC, Goldberg RB (1984) Organ-specific nuclear RNAs in tobacco. Proc Natl Acad Sci USA 81:2801–2805

    Google Scholar 

  • Klemm M (1927) Vergleichende morphologische und entwicklungsgeschichtliche Untersuchung einer Reihe multipler Allelomorphe bei A. majus. Bot Arch 20:423–474

    Google Scholar 

  • Koltunow AM, Truettner J, Cox KH, Wallroth M, Goldberg RB (1991) Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2:1201–1224

    Google Scholar 

  • Logemann J, Schell J, Willmitzer L (1987) Improved method for the isolation of mRNA from plant tissue. Anal Biochem 163:16–20

    CAS  PubMed  Google Scholar 

  • Lütcke HA, Chow KC, Mickel FS, Moss KA, Kern HF, Scheele GA (1987) Selection of AUG initiation codons differs in plants and animals. EMBO J 6:43–48

    Google Scholar 

  • Mascarenhas JP (1989) The male gametophyte of flowering plants. Plant Cell 1:657–664

    Google Scholar 

  • Maxam A, Gilbert W (1980) Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol 65:499–560

    Google Scholar 

  • Melzer S, Majewski DH, Apel K (1990) Early changes in gene expression during the transition from vegetative to generative growth in the long day plant Sinapsis alba. Plant Cell 2:953–961

    Google Scholar 

  • Nacken WKF (1990) Molekularbiologische Untersuchungen zur Blütenentwicklung von A. majus. Ph D thesis, Universität Köln

  • Nacken WKF, Huijser P, Saedler H, Sommer H (1991) Molecular analysis of tap2, and anther-specific gene from A. majus. FEBS Lett 280:155–158

    Google Scholar 

  • Norman C, Runswick M, Pollock R, Treisman R (1988) Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 5:989–1003

    Google Scholar 

  • Passmore S, Elbe R, Tye B-K (1989) A protein involved in minichromosome maintenance in yeast binds a transcriptional enhancer conserved in eucaryotes. Genes Dev 3:921–935

    Google Scholar 

  • Regan SM, Moffatt BA (1990) Cytochemical analysis of pollen development in wild-type Arabidopsis and a male-sterile mutant. Plant Cell 2:877–889

    Google Scholar 

  • Rodriguez-Palenzuela P, Pintor-Toro JA, Carbonero P, Garcia-Olmedo F (1988) Nucleotide sequence and endosperm-specific expression of the structural gene for the toxin α-hordothionin in barley. Gene 70:271–281

    Google Scholar 

  • Rohde W, Rosch K, Kröger K, Salamini F (1990) Nucleotide sequence of a Hordeum vulgare gene encoding a glycine-rich protein with homology to vertebrate cytokeratins. Plant Mol Biol 14:1057–1059

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  • Schwarz-Sommer Zs, Gierl A, Klösgen RB, Wienand U, Peterson PA, Saedler H (1984) The Spin (EN) transposable element controls the excision of a 2 kb DNA insert at the wx-m8 allele of Zea mays. EMBO J 3:1021–1028

    Google Scholar 

  • Schwarz-Sommer Zs, Huijser P, Nacken W, Saedler H, Sommer H (1990) Genetic control of flower development by homeotic genes in Anthirrhinum majus. Science 250:931–936

    CAS  Google Scholar 

  • Seurinck J, Truettner J, Goldberg RB (1990) The nucleotide sequence of an anther-specific gene. Nucleic Acids Res 18:3403

    Google Scholar 

  • Smith AG, Gasser CS, Budelier KA, Fraley RT (1990) Identification and characterisation of stamen- and tapetum-specific genes from tomato. Mol Gen Genet 222:9–16

    Google Scholar 

  • Sommer H, Saedler H (1986) Molecular characterisation of the chalcone synthase gene of Anthirrhinum majus. Mol Gen Genet 202:429–434

    Google Scholar 

  • Sommer H, Beltran J-P, Huijser P, Pape H, Lönnig W-E, Saedler H, Schwarz-Sommer Zs (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Anthirrhinum majus: the protein shows homology to transcription factors. EMBO J 9:605–613

    Google Scholar 

  • Strassburger E, Noll F, Schenk AFW (1983) Lehrbuch der Botanik. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Twell DT, Wing R, Yamaguchi J, McCormick S (1989) Isolation and expression of an anther-specific gene from tomato. Mol Gen Genet 217:240–245

    Google Scholar 

  • Ursin VM, Yamaguchi J, McCormick S (1989) Gametophytic and sporophytic expression of anther-specific genes in developing tomato anthers. Plant Cell 1:727–736

    Google Scholar 

  • Varner JE, Lin C-S (1989) Plant cell wall architecture. Cell 56:231–239

    Google Scholar 

  • Vasil IK (1967) Physiology and cytology of anther development. Biol Rev 42:327–361

    Google Scholar 

  • Vithanage HJ, Knox RB (1980) Periodicity of pollen development and quantitative cytochemistry of exine and intine enzymes in the grasses Perenne L. and Phalaris tuberosa L. Ann Bot 45:131–141

    Google Scholar 

  • Yanofsky MF, Ma H, Bowman JL, Drews GH, Feldman KA, Meyerowitz EM (1990) Agamous: an Arabidopsis homeotic gene whose product resembles transcription factors. Nature 346:35–38

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Schell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nacken, W.K., Huijser, P., Beltran, JP. et al. Molecular characterization of two stamen-specific genes, tap1 and fil1, that are expressed in the wild type, but not in the deficiens mutant of Antirrhinum majus . Molec. Gen. Genet. 229, 129–136 (1991). https://doi.org/10.1007/BF00264221

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00264221

Key words

Navigation