Skip to main content
Log in

Regulation of transcription and promoter mapping of the structural genes for nitrogenase (nifHDK) of Azospirillum brasilense Sp7

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Transcription of the structural genes for nitrogenase (nifHDK) in Azospirillum brasilense Sp7 was analysed using Northern blots of total RNA extracted from cultures grown under nitrogen-fixing conditions. Hybridization with an internal nifH probe revealed two transcripts, a major one (by concentration) of 1.1 kb corresponding to nifH and a minor one of 5.6 kb corresponding to nifHDK. Hybridization with nifD or nifK probes revealed the minor transcript of 5.6 kb. This confirms that the nifHDK genes are organized as a single transcription unit and suggests regulation at the level of termination of transcription. The complete nucleotide sequence of nifH was established and the DNA region upstream of the initiation codon was analysed for transcription and translation signals. The nifH open reading frame (ORF) is preceded by an NtrA-dependent promoter and two elements homologous to upstream activator sequences (UAS) required for NifA-mediated activation in other diazotrophs. Promoter mapping with S1 nuclease revealed two start sites located 10 by and 40 by downstream of the NtrA-dependent promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez-Morales A, Betancourt-Alvarez M, Kaluza K, Hennecke H (1986) Activation of the Bradyrhizobium japonicum nifH and nifDK operons is dependent on promoter-upstream DNA sequences. Nucleic Acids Res 14:4207–4227

    Google Scholar 

  • Arnold W, Rump A, Klipp W, Priefer UB, Puhler A (1988) Nucleotide sequence of a 24,206-base-pair DNA fragment carrying the entire nitrogen fixation gene cluster of Klebsiella pneumoniae. J Mot Biel 203:715–738

    Google Scholar 

  • Ausubel FM (1984) Regulation of nitrogen fixation genes. Cell 37:5–6

    Google Scholar 

  • Berk AJ, Sharp PA (1977) Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids. Cell 12:721–732

    Google Scholar 

  • Beynon J, Cannon M, Buchanon-Wollaston V, Cannon F (1983) The nif promoters of Klebsiella pneumoniae have a characteristic primary structure. Cell 34:665–671

    Google Scholar 

  • Bozouklian H, Elmerich C (1986) Nucleotide sequence of the Azospirillum brasilense Sp7 glutamine synthetase structural gene. Biochimie 68:1181–1187

    Google Scholar 

  • Bozouklian H, Fogher C, Elmerich C (1986) Cloning and characterization of the glnA gene of Azospirillum brasilense Sp7. Ann Inst Pasteur 137 B:3–18

    Google Scholar 

  • Brigle KE, Newton WE, Dean DR (1985) Complete nucleotide sequence of the Azotobacter vinelandii nitrogenase structural gene cluster. Gene 37: 37–44

    Google Scholar 

  • Buck M, Khan H, Dixon R (1985) Site-directed mutagenesis of the Klebsiella pneumoniae nifL and nifH promoters and in-vivo analysis of promoter activity. Nucleic Acids Res 13:7621–7638

    Google Scholar 

  • Buck M, Cannon W, Woodcock J (1987) Transcriptional activation of the Klebsiella nitrogenase promoter may involve DNA loop formation. Mot Microbiol 1:243–249

    Google Scholar 

  • Dixon RA (1984) The genetic complexity of nitrogen fixation. J Gen Microbiol 130:2745–2755

    Google Scholar 

  • Elmerich C (1986) Azospirillum. In: Pühler A, Broughton WJ (eds) Nitrogen fixation molecular biology. Clarendon Press Oxford, vol IV, pp 106–126

    Google Scholar 

  • Fani R, Bazzicalupo M, Damiani G, Bianchi A, Schipani C, Sgaramella V, Polsinelli M (1989) Cloning of histidine genes of Azospirillum brasilense: organisation of the ABFH gene cluster and nucleotide sequence of the hisB gene. Mot Gen Genet 216:224–229

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    CAS  PubMed  Google Scholar 

  • Fitzmaurice WP, Saari LL, Lowery R, Ludden PW, Roberts GP (1989) Genes coding for the reversible ADP-ribosylation system of dinitrogenase reductase from Rhodospirillum rubrum. Mot Gen Genet 218:340–347

    Google Scholar 

  • Fourney RM, Miyakoshi J, Day RS, Paterson MS (1988) Northern blotting: efficient RNA staining and transfer. Focus 10: 5–7

    Google Scholar 

  • Fox GE, Pechmann KR, Woese CR (1977) Comparative cataloguing of 16S rRNA; Molecular approach to procaryotic systematics. Int J Syst Bacteriol 27:44–57

    Google Scholar 

  • Fuhrmann M, Hennecke H (1984) Rhizobium japonicum nitrogenase Fe protein gene (nifH). J Bacteriol 158:1005–1011

    Google Scholar 

  • Galimand M, Perroud B, Delorme F, Paquelin A, Vieille C, Bozouklian H, Elmerich C (1989) Identification of DNA regions homologous to nitrogen fixation genes nifE, nifUS and fixABC in Azospirillum brasilense Sp7. J Gen Microbio1 135:1047–1059

    Google Scholar 

  • Glatron MF, Rapoport G (1972) Biosynthesis of the parasporal inclusion of Bacillus thuringiensis: half-life of its corresponding messenger RNA. Biochimie 54:1291–1301

    Google Scholar 

  • Hartmann A, Fu H, Burris RH (1986) Regulation of nitrogenase activity by ammonium chloride in Azospirillum spp. J Bacteriol 165:864–870

    Google Scholar 

  • Hartmann A, Fu H, Burris RH (1988) Influence of amino acids on nitrogen fixation ability and growth of Azospirillum spp. Appl Environ Microbiol 54:87–93

    Google Scholar 

  • Haselkorn R, Golden JW, Lammers PJ, Mulligan ME (1986) Developmental rearrangement of cyanobacterial nitrogen fixation genes. Trends Genet 2:255–259

    Google Scholar 

  • Hennecke H, Kaluza K, Thony B, Fuhrmann M, Ludwig W, Stackebrandt E (1985) Concurrent evolution of nitrogenase genes and 16S rRNA in Rhizobium species and other nitrogen fixing bacteria. Arch Microbiol 142:342–348

    Google Scholar 

  • Jacobson MR, Premakumar R, Bishop PE (1986) Transcriptional regulation of nitrogen fixation by Molybdenum in Azotobacter vinelandii. J Bacteriol 167:480–486

    Google Scholar 

  • Jacobson MR, Newton WE, Weiss MC, Dean DR (1988) Differential accumulation of the nif structural gene mRNAs and gene products in Azotobacter vinelandii. In: Bothe H, de Bruijn FJ, Newton WE (eds) Nitrogen fixation: hundred years after. Gustav Fischer, Stuttgart, New York, p 321

    Google Scholar 

  • Jacobson MR, Brigle KE, Bennett LT, Setterquist RA, Wilson MS, Cash VL, Beynon J, Newton WE, Dean DR (1989) Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii. J Bacteriol 171:1017–1027

    Google Scholar 

  • Jones R, Woodley P, Robson R (1984) Cloning and organization of some genes for nitrogen fixation from Azotobacter chroococcum and their expression in Klebsiella pneumoniae. Mot Gen Genet 197:318–327

    Google Scholar 

  • Kaluza K, Hennecke H (1982) The nitrogenase genes of Klebsiella pneumoniae are transcribed into a single polycistronic mRNA subsequent to nifLA expression. FEMS Microbiol Lett 15:57–60

    Google Scholar 

  • Kennedy C, Buck M, Evans D, Humphrey R, Jones R, Ramos J, Robson R, Santero E, Tibelius K, Toukdarian A, Woodley P, Yates G (1987) The genetic analysis of nitrogen fixation, oxygen tolerance and hydrogen uptake in azotobacters. Philos Trans R Soc Lond B317:159–171

    Google Scholar 

  • Krol ADM, Hontelez JGJ, Roonzendaal B, Van Kammen A (1982) On the operon structure of the nitrogenase genes of Rhizobium leguminosarum and Azotobacter vinelandii. Nucleic Acids Res 10:4147–4156

    Google Scholar 

  • Maniatis T, Fritsch E, Sambrook J (1982)Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Merrick M, Filser M, Dixon R, Elmerich C, Sibold L, Houmard J (1980) The use of translocatable elements to construct a fine structure map of the Klebsiella pneumoniae nitrogen fixation (nif) gene cluster. J Gen Microbiol 117:509–520

    Google Scholar 

  • Mevarech M, Rice D, Haselkorn R (1980) Nucleotide sequence of a cyanobacterial nifH gene coding for nitrogenase reductase. Proc Natl Acad Sci USA 77:6476–6480

    Google Scholar 

  • Nair SK, Jara P, Quiviger B, Elmerich C (1983) Recent developments in the genetics of nitrogen fixation. Experientia [Suppl] 48:29–38

    Google Scholar 

  • Norel F, Elmerich C (1987) Nucleotide sequence and functional analysis of the two nifH copies of Rhizobium ORS571. J Gen Microbiol 133:1563–1576

    Google Scholar 

  • Normand P, Simonet P, Bardin R (1988) Conservation of nif sequences in Frankia. Mol Gen Genet 213:238–246

    Google Scholar 

  • Okon Y (1985) Azospirillum as a potential inoculant for agriculture. Trends Biotechnol 3:223–228

    Google Scholar 

  • Ow DW, Sundaresan V, Rothstein DM, Brown SE, Ausubel FM (1983) Promoters regulated by the glnG (ntrC) and nifA gene products share a heptameric consensus sequence in the -15 region. Proc Natl Acad Sci USA 80:2524–2528

    Google Scholar 

  • Pedrosa FO, Yates MG (1984) Regulation of nitrogen fixation (nif) genes of Azospirillum brasilense by nifA and ntr (gln) type gene products. FEMS Microbiol Lett 29:95–101

    Google Scholar 

  • Perroud B, Bandhari SK, Elmerich C (1985) The nijHDK operon of Azospirillum brasilense Sp7. In: Klingmüller W (ed) Azospirillum III. Springer Verlag, Berlin, Heidelberg, pp 10–19

    Google Scholar 

  • Pollock D, Bauer CE, Scolnik PA (1988) Transcription of the Rhodobacter capsulatus nifHDK operon is modulated by the nitrogen source. Construction of plasmid expression vectors based on the nifHDK promoter. Gene 65:269–275

    Google Scholar 

  • Quiviger B, Franche C, Lutfalla G, Rice D, Haselkorn R, Elmerich C (1982) Cloning of a nitrogen fixation (nif) gene cluster of Azospirillum brasilense. Biochimie 64:495–502

    Google Scholar 

  • Robson R (1984) Identification of possible adenine nucleotidebinding sites in nitrogenase Fe- and MoFe-proteins by amino acid sequence comparison. FEBS Lett 173:394–398

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5466

    CAS  PubMed  Google Scholar 

  • Souillard N, Sibold L (1986) Primary structure and expression of a gene homologous to nifH (nitrogenase Fe-protein) from the archaebacterium Methanococcus voltae. Mol Gen Genet 203:21–28

    Google Scholar 

  • Souillard N, Sibold L (1989) Primary structure, functional organization and expression of nitrogenase structural genes of the thermophilic archaebacterium Methanococcus thermolithotrophicus. Mol Microbiol 3:541–551

    Google Scholar 

  • Sundaresan VK, Ausubel FM (1981) Nucleotide sequence of the gene coding for the nitrogenase iron protein from Klebsiella pneumoniae. J Biol Chem 256:2808–2812

    Google Scholar 

  • Tarrand JJ, Krieg NR, Döbereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with the description of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24:967–980

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Hennecke

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Zamaroczy, M., Delorme, F. & Elmerich, C. Regulation of transcription and promoter mapping of the structural genes for nitrogenase (nifHDK) of Azospirillum brasilense Sp7. Molec. Gen. Genet. 220, 33–42 (1989). https://doi.org/10.1007/BF00260852

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00260852

Key words

Navigation