Skip to main content
Log in

Molecular analysis of the Bacillus subtilis recF function

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

recF resides between the dnaN and gyrB genes of Bacillus subtilis. The recF15 mutation results in replacement of a glutamate residue in the wild type with a lysine residue in the mutant RecF protein. We investigated the in vivo regulation of recF using a transcriptional fusion to the xylE gene and assaying mRNA production. We found that novobiocin leads to a four-fold induction in recF gene expression, but this is not observed in a gyrB mutant strain. Enhancement of expression of the recF gene in the presence of novobiocin is unrelated to the SOS response. The RecF protein, which has a predicted molecular mass of 42.2 kDa, does not seem to be involved in its own regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso JC, Lüder G (1991) Characterization of recF suppressor in Bacillus subtilis. Biochemie 73:277–280

    Google Scholar 

  • Alonso JC, Trautner TA (1985) A gene controlling segregation of the Bacillus subtilis plasmid pC194. Mol Gen Genet 198:427–431

    Google Scholar 

  • Alonso JC, Viret JF, Tailor RH (1987) Plasmid maintenance in Bacillus subtilis recombination-deficient strains. Mol Gen Genet 208:349–352

    Google Scholar 

  • Alonso JC, Leonhardt H, Stiege AC (1988a) Functional analysis of the leading strand replication origin of plasmid pUB110 in Bacillus subtilis. Nucleic Acids Res 19:9127–9145

    Google Scholar 

  • Alonso JC, Tailor RH, Lüder G (1988b) Characterization of recombination-deficient mutants of Bacillus subtilis. J Bacteriol 170:3001–3007

    Google Scholar 

  • Armengod ME, Garcia-Sogo M, Lambies E (1988) Transcription organization of the dnaN and recF genes of Escherichia coli K-12. J Biol Chem 263:12109–12114

    Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    CAS  PubMed  Google Scholar 

  • Biswal N, Kleinschmidt HC, Spatz HC, Trautner TA (1967) Physical properties of the DNA of bacteriophage SP50. Mol Gen Genet 100:39–55

    Google Scholar 

  • Blanar MA, Sandler SJ, Armengod M, Ream LW, Clark AJ (1984) Molecular analysis of the recF gene of Escherichia coli. Proc Nail Acad Sci USA 81:4622–4626

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Carty M, Menzel R (1990) Inhibition of DNA gyrase activity in an in vitro transcription-translation system stimulates gyrA expression in a DNA concentration dependent manner. Evidence for the involvement of factors which may be titrated. J Mol Biol 214:397–406

    Google Scholar 

  • Friedman B, Yasbin RE (1983) The genetics and specificity of the constitutive excision repair system of Bacillus subtilis. Mol Gen Genet 190:481–486

    Google Scholar 

  • Fujita MQ, Yoshikawa H, Ogasawara N (1989) Structure of the dnaA region of Pseudomonas putida: Conservation among three bacteria, Bacillus subtilis, Escherichia coli and P. putida. Mol Gen Genet 215:381–387

    Google Scholar 

  • Fukuoka T, Moriya S, Yoshikawa H, Ogasawara N (1990) Purification and characterization of an initiation protein for chromosomal replication, DnaA, in Bacillus subtilis. J Biochem 107:732–739

    Google Scholar 

  • Gassel M, Alonso JC (1989) Expression of the recF gene following induction of the SOS response in Bacillus subtilis recombination-deficient strains. Mol Microbiol 3:1269–1276

    Google Scholar 

  • Griffin TJ, Kolodner RD (1990) Purification and preliminary characterization of the Escherichia coli K-12 RecF protein. J Bacteriol 172:6291–6299

    Google Scholar 

  • Harford N, Sueoka N (1970) Chromosomal location of antibiotic resistance markers in Bacillus subtilis. J Mol Biol 51:267–286

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Lacey RW, Chopra I (1974) Genetic studies of a multiresistant strain of Staphylococcus aureus. J Med Microbiol 7:285–297

    Google Scholar 

  • Lampe ME, Bott KF (1985) Cloning of the Bacillus subtilis recF gene. Gene 38:139–144

    Google Scholar 

  • Lovett CM, Love PE, Yasbin RE, Roberts JW (1988) SOS-like induction in Bacillus subtilis: induction of the RecA protein analog and a damage-inducible operon by DNA damage in Rec+ and DNA repair deficient strains. J Bacteriol 170:1467–1474

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • McParland A, Green L, Echols H (1980) Control of recA gene RNA in E. coli: regulatory and signal genes. Cell 20:731–737

    Google Scholar 

  • Mellado RP, Bartherlemy I, Salas M (1986) In vivo transcription of bacteriophge ϕ29 DNA early and late promoter sequences. J Mol Biol 191:191–197

    Google Scholar 

  • Menzel R, Gellert M (1983) Regulation of the genes for E. coli DNA gyrase: Homeostatic control of DNA supercoiling. Cell 34:105–113

    Google Scholar 

  • Menzel R, Gellert M (1987) Fusions of the Escherichia coli gyrA and gyrB control regions to galactokinase gene are inducible by coumermycin treatment. J Bacteriol 169:1272–1278

    Google Scholar 

  • Moffatt BA, Studier FW (1987) T7 lysozyme inhibits transcription by T7 RNA polymerase. Cell 49:221–227

    Google Scholar 

  • Moriya S, Ogasawara N, Yoshikawa H (1985) Structure and function of the region of the replication origin of the Bacillus subtilis chromosome. III. Nucleotide sequence of some 10,000 base pairs in the origin region. Nucleic Acids Res 13:2251–2265

    Google Scholar 

  • Ogasawara N, Moriya S, von Meyenburg K, Hansen FG, Yoshikawa H (1985a) Conservation of genes and their organization in the chromosomal replication region of Bacillus subtilis and Escherichia coli. EMBO J 4:3345–3350

    Google Scholar 

  • Ogasawara N, Moriya S, Yoshikawa H (1985b) Structure and function of the replication origin region of the Bacillus subtilis chromosome: IV. Transcription of the oriC region and expression of DNA gyrase genes and other open reading frames. Nucleic Acids Res 13:2267–2279

    Google Scholar 

  • Ogasawara N, Moriya S, Mazza PG, Yoshikawa H (1986) A Bacillus subtilis dnaG mutant harbours a mutation in gene homologous to the dnaN gene of Escherichia coli. Gene 45:227–231

    Google Scholar 

  • Quiñones A, Kaasch J, Kaasch M, Messer W (1989) Induction of dnaN and dnaQ gene expression in Escherichia coli by alkylation damage to DNA. EMBO J 8:587–593

    Google Scholar 

  • Radman M (1975) SOS repair hypothesis: Phenomenology of an inducible DNA repair which is accompanied by mutagenesis. In: Hanawalt P, Setlow RB (eds) Molecular mechanism for repair of DNA, part A. Plenum, New York, pp 355–367

    Google Scholar 

  • Rojo F, Zaballos A, Salas M (1990) Bend induced by the phage ϕ29 transcriptional activator in the viral late promoter is required for activation. J Mol Biol 211:713–725

    Google Scholar 

  • Rottländer E, Trautner TA (1970) Genetic and transfection studies with B. subtilis phage SP50. I. Phage mutants with restricted growth on B. subtilis strain 168. Mol Gen Genet 108:47–60

    Google Scholar 

  • Sandler SJ, Clark AJ (1990) Factors affecting expression of the recF gene of E. coli K-12. Gene 86:35–43

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    CAS  PubMed  Google Scholar 

  • Sarachu AN, Alonso JC, Grau O (1980) Novobiocin blocks the shutoff of SPOI early transcription. Virology 105:13–18

    Google Scholar 

  • Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130

    CAS  PubMed  Google Scholar 

  • deVos WM, Venema G (1983) Transformation of Bacillus subtilis competent cells: Identification and regulation of the reef gene product. Mol Gen Genet 190:56–64

    Google Scholar 

  • Walker JE, Saraste M, Runswich MJ, Gay NJ (1982) Distantly related sequences in the α and β subunits of ATP synthase, myocin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    Google Scholar 

  • Witkin EM (1976) Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol Rev 40:869–907

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13 mpl8 and pUC19 vectors. Gene 33:103–119

    Article  CAS  PubMed  Google Scholar 

  • Yasbin RF, Fields PI, Anderson BJ (1980) Properties of Bacillus subtilis 168 derivatives freed of their natural prophages. Gene 12:155–159

    Google Scholar 

  • Zukowski MM, Gaffney DF, Speck D, Kaufmann M, Findell A, Wisecup A, Lecocq JP (1983) Chromogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a cloned Pseudomonas gene. Proc Natl Acad Sci USA 80:1101–1105

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. Goebel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso, J.C., Stiege, A.C. Molecular analysis of the Bacillus subtilis recF function. Molec. Gen. Genet. 228, 393–400 (1991). https://doi.org/10.1007/BF00260632

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00260632

Key words

Navigation