Skip to main content
Log in

Depolarized fluorescence photobleaching recovery

  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The effects of the fact that the laser sources typically used in fluorescence photobleaching recovery (FPR) experiments in the most commonly employed in-line microscope imaging geometries, are highly linearly polarized, are examined in some detail. The implications of the results, in particular for the interpretation of FPR data in complex cell membrane systems in terms of laterally mobile and immobile sub-populations of the labelled molecular species of concern, are discussed. Methods of experimentally eliminating the potentially major rotational diffusion-based “artifacts”, different from those appropriate to three-dimensional (solution or suspension) systems which require other than in-line geometries, are delineated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FPR:

fluorescence photobleaching recovery

FRAP:

fluorescence recovery after photobleaching

2- and 3-D:

two- and three-dimensional

References

  • Aizenbud AL, Gershon ND (1982) Diffusion of molecules on biological membranes of non-planar form. Biophys J 38:287–293

    Article  CAS  Google Scholar 

  • Axelrod D (1985) Fluorescence photobleaching techniques and lateral diffusion. In: Bayley PM, Dale RE (eds) Spectroscopy and the dynamics of molecular biological systems. Academic Press, New York, pp 163–176

    Google Scholar 

  • Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16:1055–1069

    Article  CAS  Google Scholar 

  • Barisas BG (1984) Photobleaching recovery studies of the mobility of polymeric antigens on B cell surfaces. In: Perelson AS, DeLisi C, Wiegel FW (eds) Cell surface dynamics. Concepts and models. Marcel Dekker, New York, pp 167–202

    Google Scholar 

  • Bretscher MS (1980) Lateral diffusion in eukaryotic cell membranes. Trends Biochem Sci (TIBS) 5 (10):VI-VII

    Article  CAS  Google Scholar 

  • Dale RE (1985) Interpretation of fluorescence photobleaching recovery experiments on oriented cell membranes. FEBS Lett 192:255–258

    Article  CAS  Google Scholar 

  • Edidin M (1981) Molecular motions and membrane organization and function. In: Finean JB, Michell RH (eds) Membrane structure. Elsevier/North Holland, Amsterdam, pp 37–82

    Chapter  Google Scholar 

  • Edidin M, Zagyansky Y, Lardner TJ (1976) Measurement of membrane protein lateral diffusion in single cells. Science 191:466–468

    Article  CAS  Google Scholar 

  • Ehrenberg M, Rigler R (1972) Polarized fluorescence and rotational brownian motion. Chem Phys Lett 14:539–544

    Article  CAS  Google Scholar 

  • Elson HF, Yguerabide J (1979) Membrane dynamics of differentiating cultured embryonic chick skeletal muscle cells by fluorescence microscopy techniques. J Supramol Struct 12:47–61

    Article  CAS  Google Scholar 

  • Flanagan MT (1980) More light on membrane protein mobility. Nature 284:126

    Article  CAS  Google Scholar 

  • Hoffman W, Restall CJ (1983) Rotational and lateral diffusion of membrane proteins as determined by laser techniques. In: Chapman D (ed) Biomembrane structure and function. Macmillan Press, London, pp 257–318

    Chapter  Google Scholar 

  • Hughes BD, Pailthorpe BA, White LR (1981) The translational and rotational drag on a cylinder moving in a membrane. J Fluid Mech 110:349–372

    Article  CAS  Google Scholar 

  • Hughes BD, Pailthorpe BA, White LR, Sawyer WH (1982) Extraction of membrane microviscosity from translational and rotational diffusion coefficients. Biophys J 37:673–676

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jabloński A (1950) Fundamental polarization of photoluminescence and torsional vibrations of molecules. Acta Phys Pol 10:193–206

    Google Scholar 

  • Jabloński A (1960) On the notion of emission anisotropy. Bull Acad Pol Sci Ser Sci Math Astron Phys 8:259–264

    Google Scholar 

  • Jacobson K (1980) Fluorescence recovery after photobleaching: lateral mobility of lipids and proteins in model membranes and on single cell surfaces. In: Hillenkamp F, Pratesi R, Sacchi CA (eds) Lasers in biology and medicine. Plenum Press, New York, pp 271–288

    Chapter  Google Scholar 

  • Jacobson K (1983) Lateral diffusion in membranes. Cell Motility 3:367–373

    Article  CAS  Google Scholar 

  • Jacobson K, Wojcieszyn J (1981) On the factors determining the lateral mobility of cell surface components. Comments Mol Cell Biophys 1:189–199

    CAS  Google Scholar 

  • Jacobson K, Derzko Z, Wu E-S, Hou Y, Poste G (1976a) Measurement of the lateral mobility of cell surface components in single living cells by fluorescence recovery after photobleaching. J Suppramol Struct 5:565–576

    Article  Google Scholar 

  • Jacobson K, Wu E, Poste G (1976b) Measurement of the translational mobility of concanavalin A in glycerol-saline solutions and on the cell surface by fluorescence recovery after photobleaching. Biochim Biophys Acta 433:215–222

    Article  CAS  Google Scholar 

  • Jacobson K, Elson E, Koppel D, Webb W (1982) Fluorescence photobleaching in cell biology. Nature 295:283–284

    Article  CAS  Google Scholar 

  • Johnson P, Garland PB (1981) Depolarization of fluorescence depletion. FEBS Lett 132:252–256

    Article  CAS  Google Scholar 

  • Kaprelyants AS (1985) Lateral non-homogeneity and lateral diffusion of proteins in membranes. Trends Biochem Sci (TIBS) 10:385–386

    Article  CAS  Google Scholar 

  • Kell DB (1984) Diffusion of protein complexes in prokaryotic membranes: fast, free, random or directed? Trends Biochem Sci (TIBS) 9:86–88; ibid 379

    Article  Google Scholar 

  • Kinosita K Jr, Kawato S, Ikegami A (1977) A theory of fluorescence polarization decay in membranes. Biophys J 20:289–305

    Article  CAS  Google Scholar 

  • Koppel DE (1979) Fluorescence redistribution after photobleaching. A new multipoint analysis of membrane translational dynamics. Biophys J 28:281–291

    Article  CAS  Google Scholar 

  • Koppel DE (1983) Fluorescence photobleaching as a probe of translational and rotational motions. In: Sha'afi RI, Fernandez SM (eds) East methods in physical biochemistry and cell biology. Elsevier, New York, pp 339–367

    Google Scholar 

  • Koppel DE, Axelrod D, Schlessinger J, Elson EL, Webb WW (1976) Dynamics of fluorescence marker concentration as a probe of mobility. Biophys J 16:1315–1329

    Article  CAS  Google Scholar 

  • Lessing HE, von Jena A (1976) Separation of rotational diffusion and level kinetics in transient absorption spectroscopy. Chem Phys Lett 42:213–217

    Article  CAS  Google Scholar 

  • Lessing HE, von Jena A (1979) Continuous picosecond spectroscopy of dyes. In: Stich ML (ed) Laser handbook. North-Holland, Amsterdam, pp 753–846

    Google Scholar 

  • Lessing HE, von Jena A, Reichert M (1975) Orientational aspect of transient absorption in solutions. Chem Phys Lett 36:517–552

    Article  CAS  Google Scholar 

  • O'Shea PS (1984) Lateral diffusion: the archipelago effect. Trends Biochem Sci (TIBS) 9:378

    Article  CAS  Google Scholar 

  • O'Shea PS (1985) 2-D diffusion and the structure of biological membranes. Trends Biochem Sci (TIBS) 10:231

    Article  CAS  Google Scholar 

  • Owicki JC, McConnell HM (1980) Lateral diffusion in inhomogeneous membranes. Model membranes containing cholesterol. Biophys J 30:383–398

    Article  CAS  Google Scholar 

  • Peters R (1981) Translational diffusion in the plasma membrane of single cells as studied by fluorescence microphotolysis. Cell Biol Int Rep 5:733–760

    Article  CAS  Google Scholar 

  • Peters R, Cherry RJ (1982) Lateral and rotational diffusion of bacteriorhodopsin in lipid bilayers: experimental test of the Saffman-Delbrück equations. Proc Natl Acad Sci USA 79:4317–4321

    Article  CAS  Google Scholar 

  • Peters R, Peters J, Tews KH, Bähr W (1974) A microfluorimetric study of translational diffusion in erythrocyte membranes. Biochim Biophys Acta 367:282–294

    Article  CAS  Google Scholar 

  • Pink DA (1985) Constraints on protein lateral diffusion. Trends Biochem Sci (TIBS) 10:230

    Article  CAS  Google Scholar 

  • Restall CJ, Dale RE, Murray EK, Gilbert CW, Chapman D (1984) Rotational diffusion of calcium-dependent adenosine-5′-triphosphatase in sarcoplasmic reticulum: a detailed study. Biochemistry 23:6765–6776

    Article  CAS  Google Scholar 

  • Saffman PG (1976) Brownian motion in thin sheets of viscous fluid. J Fluid Mech 73:593–602

    Article  Google Scholar 

  • Saffman PG, Delbrück M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci USA 72:3111–3113

    Article  CAS  Google Scholar 

  • Schlessinger J, Koppel DE, Axelrod D, Jacobson K, Webb WW, Elson EL (1976) Lateral transport on cell membranes: mobility of concanavalin A receptors on myoblasts. Proc Natl Acad Sci USA 73:2409–2413

    Article  CAS  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  CAS  Google Scholar 

  • Smith BA, McConnell HM (1978) Determination of molecular motion in membranes using periodic pattern photobleaching. Proc Natl Acad Sci USA 75:2759–2763

    Article  CAS  Google Scholar 

  • Smith BA, Clark WR, McConnell HM (1979) Anisotropic molecular motion on cell surfaces. Proc Natl Acad Sci USA 76:5641–5644

    Article  CAS  Google Scholar 

  • Smith LM, McConnell HM, Smith BA, Parce JW (1981a) Pattern photobleaching of fluorescent lipid vesicles using polarized laser light. Biophys J 33:139–146

    Article  CAS  Google Scholar 

  • Smith LM, Weis RM, McConnell HM (1981b) Measurement of rotational motion in membranes using fluorescence recovery after photobleaching. Biophys J 36:73–91

    Article  CAS  Google Scholar 

  • Soleillet P (1929) Sur les paramètres, caractérisant la polarisation partielle de la lumière dans les phénomènes de fluorescence. Ann Phys (Paris) 12:23–97

    CAS  Google Scholar 

  • Tait JF, Frieden C (1982) Polymerization and gelation of actin studied by fluorescence photobleaching recovery. Biochemistry 21:3666–3674

    Article  CAS  Google Scholar 

  • van Zoelen EJJ, Tertoolen LGL, de Laat SW (1983) Simple computer method for evaluation of lateral diffusion coefficients from fluorescence photobleaching recovery kinetics. Biophys J 42:103–108

    Article  Google Scholar 

  • Vaz WLC, Hallmann D (1983) Experimental evidence against the applicability of the Saffman-Delbrück model to the translational diffusion of lipids in phosphatidylcholine bilayer membranes. FEBS Lett 152:287–290

    Article  CAS  Google Scholar 

  • Vaz WLC, Derzko ZI, Jacobson KA (1982) Photobleaching measurements of the lateral diffusion of lipids and proteins in artificial phospholipid bilayer membranes. In: Poste G, Nicolson GL (eds) Membrane reconstitution. Elsevier, New York, pp 83–136

    Google Scholar 

  • Vaz WLC, Goodsaid-Zalduondo F, Jacobson K (1984) Lateral diffusion of lipids and proteins in bilayer membranes. FEBS Lett 174:199–207

    Article  CAS  Google Scholar 

  • Vaz WLC, Clegg RM, Hallmann D (1985) Translational diffusion of lipids in liquid crystalline phase phosphatidylcholine multibilayers. A comparison of experiment with theory. Biochemistry 24:781–786

    Article  CAS  Google Scholar 

  • Ware BR (1985) Dynamic light scattering and fluorescence photobleaching recovery: application of complementary techniques to cytoplasmic mobility. In: Bayley PM, Dale RE (eds) Spectroscopy and the dynamics of molecular biological systems. Academic Press, New York, pp 133–161

    Google Scholar 

  • Webb WW (1981) Luminescence measurements of macromolecular mobility. Ann NY Acad Sci 366:300–314

    Article  CAS  Google Scholar 

  • Weber G (1953) Rotational brownian motion and polarization of the fluorescence of solutions. Adv Protein Chem 8:415–459

    Article  CAS  Google Scholar 

  • Wegener WA (1984) Fluorescence recovery spectroscopy as a probe of slow rotational motions. Biophys J 46:795–803

    Article  CAS  Google Scholar 

  • Wegener WA, Rigler R (1984) Separation of translational and rotational contributions in solution studies using fluorescence photobleaching recovery. Biophys J 46:787–793

    Article  CAS  Google Scholar 

  • Wolf DE, Handyside AH, Edidin M (1982) Effect of microvilli on lateral diffusion measurements made by the fluorescence photobleaching recovery technique. Biophys J 38:295–297

    Article  CAS  Google Scholar 

  • Yguerabide J (1971) Quoted in Reference (19) of Elson and Yguerabide (1979)

  • Zagyansky Y, Edidin M (1976) Lateral diffusion of concanavalin A receptors in the plasma membrane of mouse fibroblasts. Biochim Biophys Acta 433:209–214

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dale, R.E. Depolarized fluorescence photobleaching recovery. Eur Biophys J 14, 179–193 (1987). https://doi.org/10.1007/BF00253843

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00253843

Key words

Navigation