Skip to main content

Fluorescence Recovery After Photobleaching (FRAP): Acquisition, Analysis, and Applications

  • Protocol
  • First Online:
Methods in Membrane Lipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1232))

Abstract

A significant number of biological processes occur at, or involve cellular membranes, including; cell adhesion, migration, endocytosis, signal transduction, and many biochemical reactions involving membrane anchored scaffolds. Each process involves a complex arrangement of interacting molecules whose location in space and time influence the outcome of the event.

In this protocol we discuss the application of fluorescence recovery after photobleaching (FRAP) to study the dynamics of membrane associated molecules. We discuss the principles, acquisition and the analysis of FRAP data and address issues surrounding its interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Axelrod D, Koppel D, Schlessinger J, Elson E, Webb W (1976) Mobility measurement by fluorescence photobleaching recovery kinetics. Biophys J 16:1055–1069

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Magde D, Webb WW, Elson E (1972) Thermodynamic fluctuations in a reacting system - measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29(11):705

    Article  CAS  Google Scholar 

  3. Elson EL, Magde D (1974) Fluorescence correlation spectroscopy. 1. Conceptual basis and theory. Biopolymers 13(1):1–27

    Article  CAS  Google Scholar 

  4. Gelles J, Schnapp BJ, Sheetz MP (1988) Tracking kinesin-driven movements with nanometre-scale precision. Nature 331(6155):450–453

    Article  PubMed  CAS  Google Scholar 

  5. Lee GM, Ishihara A, Jacobson KA (1991) Direct observation of Brownian-motion of lipids in a membrane. Proc Natl Acad Sci U S A 88(14):6274–6278

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Tsien RY (2010) Nobel lecture: constructing and exploiting the fluorescent protein paintbox. Integr Biol 2(2–3):77–93

    Article  CAS  Google Scholar 

  7. Phair RD et al (2004) Global nature of dynamic protein-chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol Cell Biol 24(14):6393–6402

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. James PS, Hennessy C, Berge T, Jones R (2004) Compartmentalisation of the sperm plasma membrane: a FRAP, FLIP and SPFI analysis of putative diffusion barriers on the sperm head. J Cell Sci 117(26):6485–6495

    Article  PubMed  CAS  Google Scholar 

  9. Lai FPL et al (2008) Arp2/3 complex interactions and actin network turnover in lamellipodia. EMBO J 27(7):982–992

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Hallen MA, Liang Z-Y, Endow SA (2008) Ncd motor binding and transport in the spindle. J Cell Sci 121(22):3834–3841

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Soumpasis DM (1983) Theoretical analysis of fluorescence photobleaching recovery experiments. Biophys J 41(1):95–97

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Braeckmans K, Peeters L, Sanders NN, De Smedt SC, Demeester J (2003) Three-dimensional fluorescence recovery after photobleaching with the confocal scanning laser microscope. Biophys J 85(4):2240–2252

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Mazza D et al (2008) A New FRAP/FRAPa method for three-dimensional diffusion measurements based on multiphoton excitation microscopy. Biophys J 95(7):3457–3469

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Bulinski J, Odde D, Howell B, Salmon E, Waterman-Storer C (2001) Rapid dynamics of the microtubule binding of ensconsin in vivo. J Cell Sci 114:3885–3897

    PubMed  CAS  Google Scholar 

  15. Sprague B, Pego R, Stavreva D, McNally J (2004) Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys J 86:3473–3495

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Zadeh KS, Montas HJ, Shirmohammadi A (2006) Identification of biomolecule mass transport and binding rate parameters in living cells by inverse modeling. Theor Biol Med Model 3:36

    Article  Google Scholar 

  17. Pederson T (2001) Protein mobility within the nucleus—What are the right moves? Cell 104(5):635–638

    Article  PubMed  CAS  Google Scholar 

  18. Houtsmuller AB, Vermeulen W (2001) Macromolecular dynamics in living cell nuclei revealed by fluorescence redistribution after photobleaching. Histochem Cell Biol 115(1):13–21

    Article  PubMed  CAS  Google Scholar 

  19. Levin MH, Haggie PM, Vetrivel L, Verkman AS (2001) Diffusion in the endoplasmic reticulum of an aquaporin-2 mutant causing human nephrogenic diabetes insipidus. J Biol Chem 276(24):21331–21336

    Article  PubMed  CAS  Google Scholar 

  20. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297(5588):1873–1877

    Article  PubMed  CAS  Google Scholar 

  21. Wu J, Shekhar N, Lele PP, Lele TP (2012) FRAP analysis: accounting for bleaching during image capture. PLoS One 7(8):e42854

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Berk DA, Yuan F, Leunig M, Jain RK (1993) Fluorescence photobleaching with spatial Fourier analysis: measurement of diffusion in light-scattering media. Biophys J 65(6):2428–2436

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Deschout H et al (2010) Straightforward FRAP for quantitative diffusion measurements with a laser scanning microscope. Opt Express 18(22):22886–22905

    Article  PubMed  Google Scholar 

  24. Jönsson P, Jonsson MP, Tegenfeldt JO, Höök F (2008) A method improving the accuracy of fluorescence recovery after photobleaching analysis. Biophys J 95(11):5334–5348

    Article  PubMed  PubMed Central  Google Scholar 

  25. Braga J, McNally JG, Carmo-Fonseca M (2007) A reaction-diffusion model to study RNA motion by quantitative fluorescence recovery after photobleaching. Biophys J 92(8):2694–2703

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Goehring NW, Chowdhury D, Hyman AA, Grill SW (2010) FRAP analysis of membrane-associated proteins: lateral diffusion and membrane-cytoplasmic exchange. Biophys J 99(8):2443–2452

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Mai J et al (2011) Are assumptions about the model type necessary in reaction-diffusion modeling? A FRAP application. Biophys J 100(5):1178–1188

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Wu ES, Jacobson K, Szoka F, Portis A (1978) Lateral diffusion of a hydrophobic peptide, n-4-nitrobenz-2-oxa-1,3-diazole gramicidin-s, in phospholipid multibilayers. Biochemistry 17(25):5543–5550

    Article  PubMed  CAS  Google Scholar 

  29. Icenogle RD, Elson EL (1983) Fluorescence correlation spectroscopy and photobleaching recovery of multiple binding reactions. 2. FPR and FCS measurements at low and high DNA concentrations. Biopolymers 22(8):1949–1966

    Article  PubMed  CAS  Google Scholar 

  30. Safranyos RG, Caveney S, Miller JG, Petersen NO (1987) Relative roles of gap junction channels and cytoplasm in cell-to-cell diffusion of fluorescent tracers. Proc Natl Acad Sci 84(8):2272–2276

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Bancaud A, Huet S, Rabut G, Ellenberg J (2010) Fluorescence Perturbation Techniques to Study Mobility and Molecular Dynamics of Proteins in Live Cells: FRAP, Photoactivation, Photoconversion, and FLIP. Cold Spring Harbor Protocols 2010, pdb.top90, doi:10.1101/pdb.top90

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Mark Wainwright Analytical Centre, University of New South Wales for continuing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renee Whan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Carnell, M., Macmillan, A., Whan, R. (2015). Fluorescence Recovery After Photobleaching (FRAP): Acquisition, Analysis, and Applications. In: Owen, D. (eds) Methods in Membrane Lipids. Methods in Molecular Biology, vol 1232. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1752-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1752-5_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1751-8

  • Online ISBN: 978-1-4939-1752-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics