Skip to main content
Log in

Theoretical validation of the physical scale modelling of the electrical potential characteristics of marine impressed current cathodic protection

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The criteria for the electromagnetic scaling of electrolytic (seawater) systems are reviewed and are shown to be satisfied in the DACS (dimension and conductivity scaling) physical scale modelling of the potential characteristics of the surface of cathodically protected surfaces and the surrounding seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

r(x, y, z):

position vector

t :

time

t :

physical scaling factor

E(r, t :

electric field

E f :

electric field under flow conditions

H(r, t):

magnetic field

ε:

static dielectric constant

μ:

magnetic permeability

J(r, t):

electrical current density

J f :

electrical current density under flow conditions

J lim :

(diffusion) limited electrical current density

σ:

electrical conductivity

V :

electric potential (voltage)

V a :

anode potential

V i :

interface potential

V ia :

anode/electrolyte interface potential

Vs :

potential in electrolytic solution

V ic :

cathode/electrolyte interface potential

V c :

cathode potential

V 0 :

cathodic overpotential constant

V h :

hull potential

V ic(J):

current-voltage characteristic of cathode/electrolyte interface

ϱ:

electrical charge density

π+ :

electrical charge density of positive ions

ϱ :

electrical charge density of negative ions

v(r, t):

velocity of ion

v + :

velocity of positive ion

v p :

flow velocity of electrolyte

R p :

polarization resistance at electrode/electrolyte interface

a :

Tafel a-constant

b :

Tafel b-constant

T :

absolute temperature

P :

pressure

n :

unit normal

n i :

number of ions with charge z i

References

  1. J. N. McGrath, D. J. Tighe-Ford and L. Hodgkiss, Corr. Prev. & Cont. 32 (1985) 36.

    Google Scholar 

  2. E. D. Thomas, K/E. Lucas, R. L. Foster, A. R. Parks and A. I. Kaznoff, NACE 89 Corrosion Conference, New Orleans, April (1989) Paper 274.

  3. D. J. Tighe-Ford and J. N. McGrath, NACE 91 Corrosion Conference, Cincinnati, Ohio, March (1991) Paper 308.

  4. J. N. McGrath, D. J. Tighe-Ford and S. Ramaswamy, NACE 91 Corrosion Conference, Cincinnati, Ohio, March (1991) Paper 531.

  5. G. Sinclair, Proc. IRA 36 (1948) 1364.

    Google Scholar 

  6. D. Vitkovitch, in ‘Field Analysis’, Van Nostrand, London (1966), Chaps 6 and 11.

    Google Scholar 

  7. D. J. Tighe-Ford, J. N. McGrath and M. P. Wareham, Trans I. Mar. E. 100 (1989) 185.

    Google Scholar 

  8. J. N. Agar and T. P. Hoar, Disc. Faraday Soc. 1 (1947) 158.

    Google Scholar 

  9. C. J. Smith, ‘Electricity and Magnetism’, Edward Arnold, London (1954), pp. 661–3.

    Google Scholar 

  10. I. Fried, in ‘The Chemistry of the Electrode Processes’, Academic Press, London (1973) Chaps 2–4.

    Google Scholar 

  11. J. O. M. Bockris and A. K. N. Reddy, ‘Modern Electrochemistry’, Macdonald, London (1971).

    Google Scholar 

  12. N. W. Ashcroft and N. D. Mermin, ‘Solid State Physics’, HRW International Editions (1976) Chap. 17 p. 342, Chap. 18 p. 369.

  13. H. V. Hack, Mats. Perf. November (1989) 72.

  14. D. A. Jones, Corros. Sci. 11 (1971) 439.

    Google Scholar 

  15. S. W. J. Smith, Proc. Phys. Soc. 28 (1916) 148.

    Google Scholar 

  16. C. J. Wagner, J. Electrochem. Soc. 11 (1951) 116.

    Google Scholar 

  17. V. G. Levich, ‘Physiochemical Hydrodynamics’, Prentice-Hall, Englewood Cliffs, NJ (1962) Chap. 6.

    Google Scholar 

  18. J. C. Rowlands, in Discussion Section Trans. I. Mar. E. 100 (1989).

  19. G. Joos, ‘Theoretical Physics’, Blackie, London (1960) Chaps 9, 32 and 35.

    Google Scholar 

  20. P. Khambaita, PhD Thesis (1995), Exeter University, UK.

    Google Scholar 

  21. J. N. McGrath, Research Report (1990) RNEC-RR-90006, RNEC Manadon, Plymouth, UK.

  22. K. F. Sander, in ‘Cathodic Protection: Theory and Practice’, Ellis Horwood, Chichester (1986) pp. 31–37.

    Google Scholar 

  23. K. F. Chan, MSc Thesis (1986), RNEC Manadon, Plymouth, UK.

    Google Scholar 

  24. A. I. Kaznoff and E. D. Thomas, Proceedings of the 11th International Corrosion Congress, Florence, 2 April (1990) 103.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ditchfield, R.W., McGrath, J.N. & Tighe-Ford, D.J. Theoretical validation of the physical scale modelling of the electrical potential characteristics of marine impressed current cathodic protection. J Appl Electrochem 25, 54–60 (1995). https://doi.org/10.1007/BF00251265

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00251265

Keywords

Navigation