Skip to main content
Log in

Diffusion through a multilayered phase in electrochemical systems: an approach by numerical inversion of the Laplace transform

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Diffusion through a multilayered material is analysed by means of the Laplace transformation. An algorithm using a new method for numerical inversion of the Laplace transform is successfully developed for solving the diffusion equations. The procedure is applied to an analysis of hydrogen permeation through a simple mulilayered material related to electrochemical testing. The problem appears simple, but the exact analytical solution is difficult; the present technique makes it possible to solve this problem while retaining a part of the advantage of the analytical method. The results are compared with results obtained by the conventional analytical method, which is based on diffusion through a single layer. The applicability and limit of use of the conventional analytical method is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

approximation of parameter in the FILT

a i :

concentration gradient in the ith layer at steady state

A i :

dimensionless concentration gradient at steady state, l m a i /c s

b i :

concentration at the left-hand end of the layer i at steady state

B i :

dimensionless b i , b i /c s

c i :

concentration in the ith layer

c 0 :

initial concentration at the left-hand end of multilayer

c s :

concentration at the left-hand end of multilayer

C i :

dimensionless concentration, c i /c s

C i :

the Laplace transformation of concentration C i

C 0 :

dimensionless initial concentration, c 0/c s

D i :

diffusion coefficient in the ith layer

D m :

diffusion coefficient in a reference layer m

E i :

parameter, e√s i δ i

f(t) :

function

F(t) :

the Laplace transform of function f(t)

g i :

coefficient determined by boundary conditions

h i :

coefficient determined by boundary conditions

j :

flux

j 0 :

flux under the constant flux boundary condition

J :

dimensionless flux, l m j/D m c s

J 0 :

dimensionless flux under the constant flux boundary condition, l m j 0/D m c s

k i :

distribution coefficient at the ith interface, c i +1|x i +=0/c i |x i i

l i :

thickness of the ith layer

l m :

thickness of a reference layer m

n :

the number of layers

s :

variable for the Laplace transformation

S i :

parameter, √s i

t :

time

x i :

distance from the left-hand end of the ith layer

X i :

dimensionless distance, x i /l m

αi :

dimensionless diffusion coefficient, D i /D m

γ:

large real number for the inversion of the Laplace transform

δ i :

dimensionless thickness, la/l m

τ:

dimensionless time, D m t/l m 2

References

  1. H. S. Carslaw and J. C. Jaeger, ‘Conduction of Heat in Solids’, 2nd edn, Oxford University Press, London (1959), p. 323.

    Google Scholar 

  2. R. J. Davis and P. Rabinowitz, ‘Methods of Numerical Integration’, Academic Press, New York (1975) Ch. 3.

    Google Scholar 

  3. H. Sneddon, ‘The Use of Integral Transforms’, McGraw-Hill, New York (1972).

    Google Scholar 

  4. P. Durbin, Comp. J. 17 (1974) 371.

    Google Scholar 

  5. D. P. Gaver, Jr., Oper. Res. 14 (1966) 444.

    Google Scholar 

  6. T. Hosono, bit 15 (1983) 1158 (in Japanese); T. Hosono, ‘Fast Inversion of Laplace Transform in BASIC’, Kyoritsu Shuppan, Tokyo (1984) (in Japanese).

    Google Scholar 

  7. M. A. V. Devanathan and Z. Stachurski, Proc. Roy. Soc. A270 (1962) 90.

    Google Scholar 

  8. T. McBreen, L. Nanis and W. Beck, J. Electrochem. Soc. 113 (1966) 1218.

    Google Scholar 

  9. L. Nanis and T. K. G. Naboodhiri, ibid. 119 (1972) 691.

    Google Scholar 

  10. S. K. Yen and H. C. Shin, ibid. 135 (1988) 1169.

    Google Scholar 

  11. M. C. Kimble, R. H. White, Y.-M. Tsuo and R. N. Beaver, ibid. 137 (1990) 2510.

    Google Scholar 

  12. D. Fan, R. E. White and N. Gruberger, J. Appl. Electrochem. 22 (1992) 770.

    Google Scholar 

  13. R.-H. Song and S.-I. Pyun, J. Electrochem. Soc. 137 (1990) 1051.

    Google Scholar 

  14. E. Wicke and H. Brodowsky, ‘Hydrogen in Metals II’, (edited by G. Alefeld and J. Völkl), Springer-Verlag, Berlin (1978) p. 140.

    Google Scholar 

  15. R.-H. Song, S.-I. Pyun and R. A. Oriani, J. Electrochem. Soc. 137 (1990) 1703.

    Google Scholar 

  16. J. A. Barrie, J. D. Levine, A. S. Michaels and P. Wong, Trans. Faraday Soc. 59 (1963) 869.

    Google Scholar 

  17. R. Ash, R. M. Barrer and D. G. Palmer, Brit. J. Appl. Phys. 16 (1965) 873.

    Google Scholar 

  18. T. Shitara, S. Matsumoto and M. Suzuki, Int. Chem. Eng. 27 (1987) 76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogata, Y., Sakka, T. & Iwasaki, M. Diffusion through a multilayered phase in electrochemical systems: an approach by numerical inversion of the Laplace transform. J Appl Electrochem 25, 41–47 (1995). https://doi.org/10.1007/BF00251263

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00251263

Keywords

Navigation