Skip to main content
Log in

Hyperbolicity and change of type in the flow of viscoelastic fluids

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The equations governing the flow of viscoelastic liquids are classified according to the symbol of their differential operators. Propagation of singularities is discussed and conditions for a change of type are investigated. The vorticity equation for steady flow can change type when a critical condition involving speed and stresses is satisfied. This leads to a partitioning of the field of flow into subcritical and supercritical regions, as in the problem of transonic flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Agmon, A. Douglis & L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, Comm. Pure Appl. Math. 12 (1959), 623–727 and 17 (1964), 35–92.

    MATH  Google Scholar 

  2. M. Ahrens, D. D. Joseph, M. Renardy & Y. Renardy, Remarks on the stability of viscometric flow, Rheol Acta, forthcoming.

  3. U. Akbay, E. Becker, S. Krozer & S. Sponagel, Instability of slow viscometric flow, Mech. Res. Comm. 7 (1980), 199–204.

    Google Scholar 

  4. B. Bernstein, E. A. Kearsley & L. J. Zapas, A study of stress relaxation with finite strain, Trans. Soc. Rheol. 7 (1963), 391–410.

    Google Scholar 

  5. G. Böhme, Strömungsmechanik nichtnewtonscher Fluide, Teubner Studienbücher Mechanik, B. G. Teubner, Stuttgart 1981.

    Google Scholar 

  6. B. D. Coleman, M. E. Gurtin & I. Herrera R., Waves in materials with memory I & II Arch. Rational Mech. Anal. 19 (1965), 1–19; 239–265.

    Google Scholar 

  7. B. D. Coleman & M. E. Gurtin, On the stability against shear waves of steady flows of non-linear viscoelastic fluids, J. Fluid Mech. 33 (1968), 165–181.

    Google Scholar 

  8. B. D. Coleman, Necking and drawing in polymeric fibers under tension, Arch. Rational Mech. Anal. 83 (1983), 115–137.

    Google Scholar 

  9. B. D. Coleman & W. Noll, An approximation theorem for functionals with applications in continuum mechanics, Arch. Rational Mech. Anal. 6 (1960), 355–370.

    Google Scholar 

  10. M. J. Crochet, A. R. Davies & K. Walters, Numerical Simulation of Non-Newtonian Flow, Elsevier, 1984.

  11. C. F. Curtiss & R. B. Bird, A kinetic theory for polymer melts, J. Chem. Phys. 74 (1981), 2016–2033.

    Google Scholar 

  12. J. L. Ericksen, Equilibrium of bars, J. Elasticity 5 (1975), 191–201.

    Google Scholar 

  13. A. G. Fabula, An experimental study of grid turbulence in dilute high-polymer solutions, Ph. D. Thesis, Pennsylvania State Univ., University Park 1966.

    Google Scholar 

  14. I. M. Gelfand, Some problems in the theory of quasilinear equations, Amer. Math. Soc. Translations 29 (1963), 295–380.

    Google Scholar 

  15. H. Giesekus, A unified approach to a variety of constitutive models for polymer fluids based on the concept of configuration dependent molecular mobility, Rheol. Acta 21 (1982), 366–375.

    Google Scholar 

  16. H. Hattori, Breakdown of smooth solutions in dissipative nonlinear hyperbolic equations, Quart. Appl. Math. 40 (1982/83), 113–127.

    Google Scholar 

  17. J. K. Hunter & M. Slemrod, Unstable viscoelastic fluid flow exhibiting hysteretic phase changes, Phys. Fluids 26 (1983), 2345–2351.

    Google Scholar 

  18. D. F. James, Laminar flow of dilute polymer solutions around circular cylinders, Ph. D. Thesis, California Institute of Technology, Pasadena 1967.

    Google Scholar 

  19. A. Jameson, Iterative solution of transonic flows over airfoils and wings, including flows at Mach 1, Comm. Pure Appl. Math. 27 (1974), 283–300.

    Google Scholar 

  20. A. Jameson, Transonic flow calculations, in: H. J. Wirz & J. J. Smolderen (eds.): Numerical Methods in Fluid Dynamics, McGraw Hill/Hemisphere, Washington 1978.

    Google Scholar 

  21. M. W. Johnson & D. Segalman, A model for viscoelastic fluid behavior which allows non-affine deformation, J. Non-Newtonian Fluid Mech. 2 (1977), 255–270.

    Google Scholar 

  22. A. Kaye, Co A Note 134, The college of Aeronautics, Cranfield, Bletchley, England 1962.

    Google Scholar 

  23. J. Y. Kazakia, The evolution of small rotational perturbations to a uniform rotation of a viscoelastic fluid contained between parallel plates, J. Non-Newtonian Fluid Mech. 15 (1984), 45–60.

    Google Scholar 

  24. J. Y. Kazakia & R. S. Rivlin, Run-up and spin-up in a viscoelastic fluid, Rheol. Acta 20 (1981), 111–127; R. S. Rivlin, II–IV, Rheol. Acta 21 (1982), 107–111 and 213–222, 22 (1983), 275–283.

    Google Scholar 

  25. A. I. Leonov, Nonequilibrium thermodynamics and rheology of viscoelastic polymer media, Rheol. Acta 15 (1976), 85–98.

    Google Scholar 

  26. J. L. Lions & E. Magenes, Non-homogeneous boundary value problems and applications I, Springer, Berlin-Heidelberg-New York 1972.

    Google Scholar 

  27. M. Luskin, On the classification of some model equations for viscoelasticity, Rheol. Acta (to appear).

  28. R. Malek-Madani & J. A. Nohel, Formation of singularities for a conservation law with memory, (forthcoming) SIAM J. Math. Anal.

  29. P. Markowich & M. Renardy, Lax-Wendroff methods for hyperbolic history value problems, SIAM J. Num. Anal. 21 (1984), 24–51.

    Google Scholar 

  30. M. S. Mock, Systems of conservation laws of mixed type, J. Diff. Eq. 37 (1980), 70–88.

    Google Scholar 

  31. E. Murman, Analysis of embedded shock waves calculated by relaxation methods, Proc. AIAA Conf. on Computational Fluid Dynamics, Palm Springs 1973, 27–40.

  32. E. Murman & J. D. Cole, Calculation of plane steady transonic flows, AIAA J. 9 (1971), 114–121.

    Google Scholar 

  33. A. Narain & D. D. Joseph, Linearized dynamics for step jumps of velocity and displacements of shearing flows of a simple fluid, Rheol. Acta 21 (1982), 228–250.

    Google Scholar 

  34. J. G. Oldroyd, Non-Newtonian effects in steady motion of some idealized elasticoviscous liquids, Proc. Roy. Soc. London A 245 (1958), 278–297.

    Google Scholar 

  35. C. J. S. Petrie & M. M. Denn, Instabilities in polymer processing, AIChE J. 22 (1976), 200–236.

    Google Scholar 

  36. S. I. Regirer & I. M. Rutkevich, Certain singularities of the hydrodynamic equations of non-Newtonian media, J. Appl. Math. Mech. 32 (1968), 962–966.

    Google Scholar 

  37. M. Renardy, Some remarks on the propagation and non-propagation of discontinuities in linearly viscoelastic liquids, Rheol. Acta 21 (1982), 251–264.

    Google Scholar 

  38. M. Renardy, Singularly perturbed hyperbolic evolution problems with infinite delay and an application to polymer rheology, SIAM J. Math. Anal. 15 (1984), 333–349.

    Google Scholar 

  39. M. Renardy, A local existence and uniqueness theorem for a K-BKZ fluid, (forthcoming) Arch. Rational Mech. Anal.

  40. I. M. Rutkevich, The propagation of small perturbations in a viscoelastic fluid, J. Appl. Math. Mech. 34 (1970), 35–50.

    Google Scholar 

  41. I. M. Rutkevich, On the thermodynamic interpretation of the evolutionary conditions of the equations of the mechnics of finitely deformable viscoelastic media of Maxwell type. J. Appl. Math. Mech. 36 (1972), 283–295.

    Google Scholar 

  42. J. C. Saut & D. D. Joseph, Fading Memory, Arch. Rational Mech. Anal. 81 (1983), 53–95.

    Google Scholar 

  43. M. Slemrod, Unstable viscoelastic fluid flows, in: R. L. Sternberg, A. J. Kalinowski & J. S. Papadakis (eds.), Nonlinear Partial Differential Equations in Engineering and Applied Sciences, Marcel Dekker, New York-Basel 1980, 33–43.

    Google Scholar 

  44. M. Slemrod, Instability of steady shearing flows in a nonlinear viscoelastic fluid, Arch. Rational Mech. Anal. 68 (1978), 211–225.

    Google Scholar 

  45. K. Straub, Zur Untersuchung der Anlaufströmung von viskoelastischen Flüssigkeiten, Rheol. Acta 16 (1977), 385–393.

    Google Scholar 

  46. R. I. Tanner, Note on the Rayleigh problem for a viscoelastic fluid, ZAMP 13 (1962), 573–580.

    Google Scholar 

  47. J. P. Tordella, Unstable flow of molten polymers, in: F. Eirich, Rheology: Theory and Applications, Vol. 5, Academic Press, New York-London 1969.

    Google Scholar 

  48. C. Truesdell & W. Noll, The Nonlinear Field Theories of Mechanics, Handbuch der Physik III/3, eds. S. Flügge, Springer, Berlin-Heidelberg-New York 1965.

    Google Scholar 

  49. J. S. Ultman & M. M. Denn, Anomalous heat transfer and a wave phenomenon in dilute polymer solutions, Trans. Soc. Rheology 14 (1970), 307–317.

    Google Scholar 

  50. C. Truesdell, A First Course in Rational Continuum Mechanics, Academic Press, New York-San Francisco-London 1977.

    Google Scholar 

  51. G. Gripenberg, Nonexistence of smooth solutions for shearing flows in a nonlinear viscoelastic fluid, SIAM J. Math. Anal. 13 (1982), 954–961.

    Google Scholar 

  52. C. Truesdell, The meaning of viscometry in fluid mechanics. Annual Reviews of Fluid Mech. 6 (1974), 111–146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Walter Noll on the Occasion of his 60th Birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joseph, D.D., Renardy, M. & Saut, JC. Hyperbolicity and change of type in the flow of viscoelastic fluids. Arch. Rational Mech. Anal. 87, 213–251 (1985). https://doi.org/10.1007/BF00250725

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00250725

Keywords

Navigation