Skip to main content
Log in

On weak solutions to evolution equations of viscoelastic fluid flows

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

We study a system of nonlinear equations describing unsteady flows of a viscoelastic fluid of the Oldroyd type in a bounded three-dimensional domain under the mixed boundary conditions: the Navier slip condition is set on one part of the boundary, while on the other part, the no-slip condition is set. We prove the theorem concerning the existence, uniqueness, and energy estimates for weak solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Reiner, Rheology (Springer, Berlin, 1958; Fizmatgiz, Moscow, 1965].

  2. G. Astarita and G. Marucci, Principles of Non-Newtonian Fluid Mechanics (McGraw-Hill, New York, 1974).

    Google Scholar 

  3. M. Renardy, “Existence of Slow Steady Flows of Viscoelastic Fluids with Differential Constitutive Equations,” Z. Angew. Math. Mech. 65, 449–451 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. A. Kotsiolis and A. P. Oskolkov, “Solvability of the Basic Initial-Boundary Problem for the Equations of Motion of an Oldroyd Fluid on (0, 8) and the Behavior of Its Solutions as t ? +8,” J. SovietMath. 46 (1), 1595–1598 (1989).

    MATH  Google Scholar 

  5. C. Guillopé and J.-C. Saut, “Existence Results for the Flow of Viscoelastic Fluids with a Differential Constitutive Law,” Nonlinear Anal. 15, 849–869 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  6. E. M. Turganbaev, “Initial-Boundary Value Problems for the Equations of a Viscoelastic Fluid of Oldroyd Type,” Sibirsk. Mat. Zh. 36 (2), 444–458 (1995) [SiberianMath. J. 36 (2), 444–458 (1995)].

    MathSciNet  MATH  Google Scholar 

  7. P. L. Lions and N. Masmoudi, “Global Solutions for Some Oldroyd Models of Non-Newtonian Flows,” Chinese Ann. Math. Ser. B 21, 131–146 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  8. E. S. Baranovskii, “On Steady Motion of Viscoelastic Fluid of Oldroyd Type,” Mat. Sb. 205 (6), 3–16 (2014) [Sbornik:Math. 205 (6), 763–776 (2014)].

    Article  MATH  Google Scholar 

  9. C. Le Roux, “On Flows of Viscoelastic Fluids of Oldroyd Type withWall Slip,” J. Math. Fluid Mechanics 16, 335–350 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Doubova and E. Fernandez-Cara, “On the Control of Viscoelastic Jeffreys Fluids,” Systems Control Lett. 21, 573–579 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  11. E. S. Baranovskii, “Optimal Control for Steady Flows of the Jeffreys Fluids with Slip Boundary Condition,” Sibirsk. Zh. Industr. Mat. 17 (1), 18–27 (2014) [J. Appl. Indust. Math. 8 (2), 168–176 (2014)].

    MATH  Google Scholar 

  12. J.-C. Saut, “Lectures on theMathematical Theory of Viscoelastic Fluids,” in Lect. Anal. Nonlinear Partial Differential Equations, Ser. Morningside Lectures on Mathematics, Vol. 3 (Internat. Press, Somerville, Massachusetts, 2013), pp. 325–393.

    Google Scholar 

  13. M. A. Artemov and E. S. Baranovskii, “Mixed Boundary-Value Problems for Motion Equations of a Viscoelastic Medium,” Electron. J. Differential Equations. 2015 (252), 1–9 (2015).

    MathSciNet  MATH  Google Scholar 

  14. J. L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires (DunodGauthier-Villars, Paris, 1969; Mir, Moscow, 1972).

    MATH  Google Scholar 

  15. V. A. Solonnikov and V. E. Shchadilov, “On a Boundary Value Problem for a Stationary System of Navier–Stokes Equations,” Trudy Mat. Inst. Steklov. 125, 196–210 (1973).

    MathSciNet  Google Scholar 

  16. V. V. Ragulin, “To the Problemof the Flow of a Viscous Liquid through a Bounded Region forGiven Pressure Drop and Liquid Head,” Dinamika Sploshn. Sredy 27, 78–92 (1976).

    MathSciNet  Google Scholar 

  17. A. V. Kazhikhov and V. V. Ragulin, “Flow Problem for the Equations of an Ideal Fluid,” Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 96, 84–96 (1980) [J. SovietMath. 21 (5), 700–710 (1983)].

    MathSciNet  MATH  Google Scholar 

  18. O. Pironneau, “Conditions aux limites sur la pression pour les é quations de Stokes et de Navier—Stokes,” Comptes Rendus Acad. Sci. Ser. I. Math. 303, 403–406 (1986).

    MathSciNet  MATH  Google Scholar 

  19. C. Conca, F. Murat, and O. Pironneau, “The Stokes and Navier–Stokes Equations with Boundary Conditions Involving the Pressure,” Japan. J. Math. 20, 279–318 (1994).

    MathSciNet  MATH  Google Scholar 

  20. A. A. Illarionov and A. Yu. Chebotarev, “Solvability of a Mixed Boundary Value Problem for the Stationary Navier–Stokes Equations,” Differentsial’nye Uravneniya 37 (5), 689–695 (2001) [Differential Equations 37 (5), 724–731 (2001)].

    MathSciNet  MATH  Google Scholar 

  21. T. Kim and D. Cao, “Some Properties on the Surfaces of Vector Fields and Its Application to the Stokes and Navier–Stokes Problem withMixed Boundary Conditions,” Nonlinear Anal. 113, 94–114 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  22. G. V. Alekseev, “Mixed Boundary Value Problems for Steady-State Magnetohydrodynamic Equations of Viscous Incompressible Fluid,” Zh. Vychisl. Mat. Mat. Fiz. 56 (8), 1441–1454 (2016) [Comput. Math. and Math. Phys. 56 (8), 1426–1439 (2016)].

    MathSciNet  Google Scholar 

  23. G. V. Alekseev and D. A. Tereshko, Analysis and Optimization in Hydrodynamics of a Viscous Liquid (Dal’nauka, Vladivostok, 2008) [in Russian].

    Google Scholar 

  24. C. L. M. H. Navier, “Mé moire sur les lois dumouvement des fluides,”Mem. Acad. Roy. Sci. Paris. 6, 389–416 (1823).

  25. G. P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady-State Problems (Springer, New York, 2011).

    MATH  Google Scholar 

  26. V. G. Litvinov, Motion of a Nonlinear-Viscous Fluid (Nauka, Moscow, 1982) [in Russian].

  27. R. Temam, Navier–Stokes Equations. Theory and Numerical Analysis (North-Holland Publishing Company, Amsterdam-New York-Oxford, 1979;Mir, Moscow, 1981).

    MATH  Google Scholar 

  28. A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Fizmatlit, Moscow, 2004; Dover Publ., New York, 1999).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Baranovskii.

Additional information

Original Russian Text © E.S. Baranovskii, 2017, published in Sibirskii Zhurnal Industrial’noi Matematiki, 2017, Vol. XX, No. 2, pp. 21–32.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranovskii, E.S. On weak solutions to evolution equations of viscoelastic fluid flows. J. Appl. Ind. Math. 11, 174–184 (2017). https://doi.org/10.1134/S199047891702003X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199047891702003X

Keywords

Navigation