Skip to main content
Log in

Altering the direction of optokinetic head nystagmus: a lesion study and a hypothetical model

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Optokinetic head nystagmus (OKN) was evoked in frogs in an optokinetic drum with vertically moving horizontal black and white stripes. The nature of the normal OKN was determined, then either one eye was removed or the basal optic root (BOR) was transected unilaterally. Eye removal did not influence the direction of the head movements. After transection of the basal optic root the animals showed oblique or horizontal nystagmic head movements during stimulation in the vertical plane. Transection of the ipsilateral BOR in monocular frogs, or removal of the eye ipsilateral to BOR transection enhanced the occurrence of horizontal head movements. Because in normal animals the pretectum mediates signals for horizontal nystagmic movements of the head, it is concluded that in certain experimental situations the pretectum will drive the optokinetic system, and in spite of stimulation in the vertical plane, horizontal head movements occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birukow G (1937) Untersuchungen über den optischen Drehnystagmus und über die Sehschärfe des Grasfrosches (Rana temporaria). Z Vergl Physiol 125:92–142

    Google Scholar 

  • Bonaventure N, Wioland L, Bigenwald J (1983) Involvement of GABA ergic mechanisms in the optokinetic nystagmus of the frog. Exp Brain Res 50:433–441

    Google Scholar 

  • Cochran SL, Dieringer N, Precht W (1984) Basic optokineticocular reflex pathways in the frog. J Neurosci 4:43–57

    Google Scholar 

  • Cochran SL, Precht W, Dieringer N (1980) Direction selective neurons in the frog's visual system. Soc Neurosci Abstr 6:839

    Google Scholar 

  • Collewijn H (1975) Oculomotor areas in the rabbit's midbrain and pretectum. J Neurobiol 6:3–22

    Google Scholar 

  • Eimer E (1978) Varianzanalyse. Verlag Kohlhammer, Stuttgart

    Google Scholar 

  • Fite KV, Reiner A, Hunt SP (1979) Optokinetic nystagmus and the accessory optic system of pigeon and turtle. Brain Behav Evol 16:192–202

    Google Scholar 

  • Frost BJ, Ramm P, Morgan B (1980) Selective activation of pigeon nBOR with vertical whole-field movements as revealed by 14C-2DG autoradiography. Soc Neurosci Abstr 6:717

    Google Scholar 

  • Gioanni H, Rey J, Villalobos J, Richard D, Dalbera A (1983) Optokinetic nystagmus in the pigeon (Columba livia). II. Role of the pretectal nucleus of the accessory optic system (AOS). Exp Brain Res 50:248–258

    Google Scholar 

  • Grasse KL, Cynader MS (1982) Electrophysiology of medial terminal nucleus of the accessory optic system in the cat. J Neurophysiol 48:490–504

    Google Scholar 

  • Gruberg ER, Grasse KL (1984) Basal optic complex in the frog (Rana pipiens): a physiological and HRP study. J Neuophysiol 51:998–1010

    Google Scholar 

  • Ingle DJ (1980) Some effect of pretectum lesions on the frog's detection of stationary objects. Behav Brain Res 1:139–163

    Google Scholar 

  • Katte O, Hoffmann KP (1980) Direction specific neurons in the pretectum of the frog (Rana esculenta). J Comp Physiol 140:53–57

    Google Scholar 

  • Lázár G (1972) Role of the accessory optic system in the optokinetic nystagmus of the frog. Brain Behav Evol 5:443–460

    Google Scholar 

  • Lázár Gy (1983) Transection of the basal optic root in the frog abolishes vertical optokinetic head-nystagmus. Neurosci Lett 43:7–11

    Google Scholar 

  • Lázár Gy (1989) Cellular architecture and connectivity of the frog's optic tectum and pretectum. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models and robots. Plenum Press, New York, pp 175–199

    Google Scholar 

  • Lázár Gy, Kolta P (1979) The optokinetic head nystagmogram of the frog. Acta Physiol Acad Sci Hung 53:479–486

    Google Scholar 

  • Lázár Gy, Alkonyi B, Tóth P (1983a) Reinvestigation of the role of the accessory optic system and pretectum in the horizontal optokinetic head nystagmus of the frog: lesion experiments. Acta Biol Hung 34:385–393

    Google Scholar 

  • Lázár Gy, Bennani S, Tóth P (1989) Neuronal pathways involved in optokinetic head nystagmus of the frog. Acta Biol Hung (in press)

  • Lázár Gy, Tóth P, Csank Gy, Kicliter E (1983b) Morphology and location of tectal projection neurons in frogs: a study with HRP and cobalt-filling. J Comp Neurol 215:108–120

    Google Scholar 

  • Manteuffel G (1982) The accessory optic system in the newt, Triturus cristatus: unitary response properties from the basal optic neuropil. Brain Behav Evol 21:175–184

    Google Scholar 

  • Manteuffel G, Petersen J, Himstedt W (1983) Optic nystagmus and nystagmogen centers in the European fire salamander (Salamandra salamandra). Zool Jb Physiol 87:113–129

    Google Scholar 

  • Montgomery N, Fite KV, Bengston L (1981) The accessory optic system of Rana pipiens: neuroanatomical connections and intrinsic organization. J Comp Neurol 203:595–612

    Google Scholar 

  • Montgomery N, Fite KV, Taylor M, Bengston L (1982) Neural correlates of optokinetic nystagmus in the mesencephalon of Rana pipiens: a functional analysis. Brain Behav Evol 21:137–150

    Google Scholar 

  • Montgomery NM, Fite KV, Grigonis AM (1985) The pretectal nucleus lentiformis mesencephali of Rana pipiens. J Comp Neurol 234:264–275

    Google Scholar 

  • Simpson JJ, Soodak RE, Hess R (1979) The accessory optic system and its relation to the vestibule-cerebellum. Prog Brain Res 50:715–724

    Google Scholar 

  • Tóth P, Csank Gy, Lázár Gy (1985) Morphology of the cells of origin of descending pathways to the spinal cord in Rana esculenta: a tracing study using cobaltic lysine complex. J Hirnforsch 26:365–383

    Google Scholar 

  • Walley RE (1967) Receptive fields in the accessory optic system of the rabbit. Exp Neurol 17:27–43

    Google Scholar 

  • Wallman J, Velez J (1985) Directional asymmetries of optokietic nystagmus: developmental changes and relation to the accessory optic system and to the vestibular system. J Neurosci 5:317–329

    Google Scholar 

  • Wallman J, Velez J, McKenna OC (1981) Lesions in avian accessory optic system severely disrupt optokinetic nystagmus in non-horizontal directions. Soc Neurosci Abstr 7:299

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lázár, G. Altering the direction of optokinetic head nystagmus: a lesion study and a hypothetical model. Exp Brain Res 77, 193–200 (1989). https://doi.org/10.1007/BF00250581

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00250581

Key words

Navigation