Skip to main content
Log in

Molecular cloning and expression of a proteinase gene from Lactococcus lactis subsp. cremoris H2 and construction of a new lactococcal vector pFX1

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The 6.5 kb HindIII DNA fragment of the Lactococcus lactis subsp. cremoris H2 plasmid pDI21 was cloned into Escherichia coli POP13 with λNM1149, and also directly into Lactococcus lactis subsp. lactis 4125 using a newly-constructed broad host-range vector pFX1. Proteinase was experessed in both transformed organisms. The proteinase resembles a PI type since it preferentially degraded β-casein. The restriction map of the 6.5 kb proteinase gene fragment has minor differences from those of published plamid proteinase genes. High-efficiency electroporation with pFX1 provides a direct approach for gene cloning in lactococci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cfu:

colony forming units

HEPES:

N-[2-hydroxyethyl]piperazine-N′-[2-ethanesulphonic acid]

References

  • Anderson DG, McKay LL (1983) Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Appl Environ Microbiol 46:549–552

    Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl Acids Res 7:1513–1523

    Google Scholar 

  • Brown JH, Howe PE (1922) Transparent milk as bacteriological medium. J Bacteriol 7:511–514

    Google Scholar 

  • Cohen SN, Chang ACY, Hsu L (1972) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli R-factor DNA. Proc Natl Acad Sci USA 69:2110–2114

    Google Scholar 

  • Crow VL, Davey GP, Pearce LE, Thomas TD (1983) Plasmid linkage of the D-tagatose 6-phosphate pathway in Streptococcus lactis: effect in lactose and galactose metabolism. J Bacteriol 153:76–83

    Google Scholar 

  • Davey GP, Crow VL, Pearce LE (1984) Enzyme analysis of Lac+ transconjugants of Streptococcus cremoris. NZJ Dairy Sci Technol 19:183–188

    Google Scholar 

  • Efstathiou JD, McKay LL (1977) Inorganic salts resistance associated with a lactose-fermenting plasmid in Streptococcus lactis. J Bacteriol 130:257–265

    Google Scholar 

  • Gasson MJ (1983) Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154:625–629

    Google Scholar 

  • Gasson MJ, Hill SHA, Anderson PH (1987) Molecular genetics of metabolic traits in lactic streptococci. In: Ferretti JJ, Curtiss RRIII (eds) Streptococcal genetics. American Society for Microbiology, Washington, DC, USA, pp 242–245

    Google Scholar 

  • Haandrikman AJ, Kok J, Laan H, Soemitro S, Ledeboer AM, Koning WN, Venema G (1989) Identification for a gene required for maturation of an extracellular lactococcal serine proteinase. J Bacteriol 171:2789–2794

    Google Scholar 

  • Hill SHA, Gasson MJ (1986) A qualitative screening procedure for the detection of casein hydrolysis by bacteria, using sodium dedecyl sulphate polyacrylamide gel electrophoresis. J Dairy Res 53:625–629

    Google Scholar 

  • Hohn B, Murray NE (1977) Packaging recombinant DNA molecules into bacteriophage particles in vitro Proc Natl Acad Sci USA 74:3259–3263

    Google Scholar 

  • Horinouchi S, Weisblaum B (1982) Nucleotide sequence and functional map of pC194, a plasmid that specific inducible chloramphenicol resistance. J Bacteriol 150:815–825

    Google Scholar 

  • Inamine JM, Lee LN, LeBlanc DJ (1986) Molecular and genetic characterization of lactose-metabolizing genes of Streptococcus lactis. J Bacteriol 167:855–862

    Google Scholar 

  • Kiwaki M, Ikemura H, Shimizu-Kadota M, Hirashima A, (1989) Molecular characterization of a cell wall-associated proteinase gene from Streptococcus lactis NCDO763. Mol Microbiol 3:356–369

    Google Scholar 

  • Kok J, Leenhouts CJ, Haandrikman AJ, Ledeboer AM, Venema G (1987) Nucleotide sequence of the cell wall proteinase gene of Streptococcus lactis Wg2 Appl Environ Microbiol 54:23–238

    Google Scholar 

  • Kok J, Dijl JMvan, Vossen JMBMvan der Venema G (1985) Cloning and expression of a Streptococcus cremoris proteinase in Bacillus subtilis and Streptococcus lactis. Appl Environ Microbiol 50:94–101

    Google Scholar 

  • Kok J, Venema G (1988) Genetics of proteinase of lactic acid bacteria. Biochimie 70:475–488

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Maniatis TE, Fritsch EF, Sambrook J (1982) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA

    Google Scholar 

  • McKay LL (1983) Functional properties of plasmids in lactic streptococci. Antonie van Leeuwenhoek 49:209–224

    Google Scholar 

  • Monnet V, LeBars D, Gripon J-C (1986) Specificity of a cell wall proteinase from Streptococcus lactis NCDO763 towards bovine β-casein. FEMS Microbiol Lett 36:127–131

    Google Scholar 

  • Murray NE (1983) Phage lambda and molecular cloning. In: Hendrix RW, Robert JW, Stahl FW, Weisberg RA (eds) Lambda II. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA, pp 395–432

    Google Scholar 

  • Powell IB, Achen MG, Hiller AJ, Davidson BE (1988) A simple and rapid method for genetic transformation of lactic streptococci by electroporation. Appl Environ Microbiol 54:655–660

    Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Bacteriol 98:503–517

    Google Scholar 

  • Terzaghi BE Sandine WE (1975) Improved medium for latic streptococci and their bacteriophages. Appl Microbiol 29:807–813

    Google Scholar 

  • Thomas TD, Pritchard GD (1987) Proteolytic enzymes of dairy stater cultures. FEMS Microbiol Rev 46:245–268

    Google Scholar 

  • Visser S, Exterkate FA, Slangen CJ, deVeer GJCM (1986) Comparative study of action of cell wall proteinases from various strains of Streptococcus cremoris on bovine βs1, β-and κ-casein. Appl Environ Microbiol 52:1162–1166

    Google Scholar 

  • Visser S, Slangen CJ, Exterkate FA, DeVeer GJCM (1988) Action of a cell wall proteinase (PI) from Streptococcus cremoris HP on bovine β-casein. Appl Microbiol Biotechnol 29:61–66

    Google Scholar 

  • Vos P, Simons G, Siezen RJ, Vos WMde (1989a) Primary structure and organization of the gene for a procaryotic, cell enveloplocated serine proteinase. J Biol Chem 264:13579–13585

    Google Scholar 

  • Vos P, Asseldonk Mvan, Jeveren Fvan, Siezen RJ, Simons G, Vos WMde (1989b) A maturation protein is essential for production of active forms of lactococcus lactis SK11 serine proteinase located in or secreted from the cell envelop. J Bacteriol 171:2795–2802

    Google Scholar 

  • Vos WMde (1986) Gene cloning in lactic streptococci. Neth Milk Dairy J 40:141–154

    Google Scholar 

  • Vos WMde (1987) Gene cloning and expression in lactic streptococci. FEMS Microbiol Rev 46:281–295

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1983) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Google Scholar 

  • Yu PL, Appleby RD, Pritchard GG, Limsowtin GKY (1989) Restriction mapping and localization of the lactose-metabolizing genes of Streptococcus cremoris pDI21. Appl Microbiol Biotech 30:71–74

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. G. Drews on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, FF., Pearce, L.E. & Yu, PL. Molecular cloning and expression of a proteinase gene from Lactococcus lactis subsp. cremoris H2 and construction of a new lactococcal vector pFX1. Arch. Microbiol. 154, 99–104 (1990). https://doi.org/10.1007/BF00249185

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00249185

Key words

Navigation