Skip to main content

Cloning and Recombinant Protein Expression in Lactococcus lactis

  • Protocol
  • First Online:
Advanced Methods in Structural Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2652))

Abstract

The Lactococcus lactis, a Gram-positive bacteria, is an ideal expression host for the overproduction of heterologous proteins in a properly folded and functional form. L. lactis has been identified as an efficient cell factory, generally recognized as safe (GRAS), has a long history of safe use in food production, and is known to have probiotic properties. Key desirable features of L. lactis include the following: (1) rapid growth to high cell densities, not requiring aeration which facilitates large-scale fermentation; (2) its Gram-positive nature precludes the presence of contaminating endotoxins; (3) the capacity to secrete stable recombinant protein into the growth medium with few proteases resulting in a properly folded, full-length protein; and (4) the availability of diverse expression vectors facilitating various cloning options. We have previously described production of several recombinant proteins with varying degrees of predicted structural complexities using the L. lactis pH-dependent P170 promoter. The purpose of this chapter is to provide a detailed protocol for facilitating wider application of L. lactis as a reliable platform for expression of heterologous recombinant proteins in soluble form. Here, we present details of the various steps involved such as cloning of the target gene in appropriate expression plasmid vector, determination of the expression levels of the heterologous protein, and initial purification of the expressed soluble recombinant protein of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jorgensen CM, Vrang A, Madsen SM (2014) Recombinant protein expression in Lactococcus lactis using the P170 expression system. FEMS Microbiol Lett 351:170–178

    Article  CAS  PubMed  Google Scholar 

  2. Acquah FK, Obboh EK, Asare K et al (2017) Antibody responses to two new Lactococcus lactis-produced recombinant Pfs48/45 and Pfs230 proteins increase with age in malaria patients living in the Central Region of Ghana. Malar J 16:306

    Article  PubMed  PubMed Central  Google Scholar 

  3. Baldwin SL, Roeffen W, Singh SK et al (2016) Synthetic TLR4 agonists enhance functional antibodies and CD4+ T-cell responses against the Plasmodium falciparum GMZ2.6C multi-stage vaccine antigen. Vaccine 34:2207–2215

    Article  CAS  PubMed  Google Scholar 

  4. Mistarz UH, Singh SK, Nguyen T et al (2017) Expression, purification and characterization of GMZ2’.10C, a complex disulphide-bonded fusion protein vaccine candidate against the asexual and sexual life-stages of the malaria-causing plasmodium falciparum parasite. Pharm Res 34:1970–1983

    Article  CAS  PubMed  Google Scholar 

  5. Roeffen W, Theisen M, Van De Vegte-Bolmer M et al (2015) Transmission-blocking activity of antibodies to Plasmodium falciparum GLURP.10C chimeric protein formulated in different adjuvants. Malar J 14:443

    Article  PubMed  PubMed Central  Google Scholar 

  6. Singh SK, Roeffen W, Mistarz UH et al (2017) Construct design, production, and characterization of Plasmodium falciparum 48/45 R0.6C subunit protein produced in Lactococcus lactis as candidate vaccine. Microb Cell Factories 16:97

    Article  Google Scholar 

  7. Singh SK, Thrane S, Chourasia BK et al (2019) Pfs230 and Pfs48/45 fusion proteins elicit strong transmission-blocking antibody responses against Plasmodium falciparum. Front Immunol 10:1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Singh SK, Thrane S, Janitzek CM et al (2017) Improving the malaria transmission-blocking activity of a Plasmodium falciparum 48/45 based vaccine antigen by SpyTag/SpyCatcher mediated virus-like display. Vaccine 35:3726–3732

    Article  CAS  PubMed  Google Scholar 

  9. Singh SK, Tiendrebeogo RW, Chourasia BK et al (2018) Lactococcus lactis provides an efficient platform for production of disulfide-rich recombinant proteins from Plasmodium falciparum. Microb Cell Factories 17:55

    Article  Google Scholar 

  10. Theisen M, Roeffen W, Singh SK et al (2014) A multi-stage malaria vaccine candidate targeting both transmission and asexual parasite life-cycle stages. Vaccine 32:2623–2630

    Article  CAS  PubMed  Google Scholar 

  11. Theisen M, Soe S, Brunstedt K et al (2004) A Plasmodium falciparum GLURP-MSP3 chimeric protein; expression in Lactococcus lactis, immunogenicity and induction of biologically active antibodies. Vaccine 22:1188–1198

    Article  CAS  PubMed  Google Scholar 

  12. Singh SK, Roeffen W, Andersen G et al (2015) A plasmodium falciparum 48/45 single epitope R0.6C subunit protein elicits high levels of transmission blocking antibodies. Vaccine 33:1981–1986

    Article  CAS  PubMed  Google Scholar 

  13. Theisen M, Jore MM, Sauerwein R (2017) Towards clinical development of a Pfs48/45-based transmission blocking malaria vaccine. Expert Rev Vaccines 16:329–336

    Article  CAS  PubMed  Google Scholar 

  14. Adu B, Cherif MK, Bosomprah S et al (2016) Antibody levels against GLURP R2, MSP1 block 2 hybrid and AS202.11 and the risk of malaria in children living in hyperendemic (Burkina Faso) and hypo-endemic (Ghana) areas. Malar J 15:123

    Article  PubMed  PubMed Central  Google Scholar 

  15. Amoah LE, Acquah FK, Ayanful-Torgby R et al (2018) Dynamics of anti-MSP3 and Pfs230 antibody responses and multiplicity of infection in asymptomatic children from southern Ghana. Parasit Vectors 11:13

    Article  PubMed  PubMed Central  Google Scholar 

  16. Amoah LE, Nuvor SV, Obboh EK et al (2017) Natural antibody responses to Plasmodium falciparum MSP3 and GLURP(R0) antigens are associated with low parasite densities in malaria patients living in the Central Region of Ghana. Parasit Vectors 10:395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Amoani B, Gyan B, Sakyi SA et al (2021) Effect of hookworm infection and anthelmintic treatment on naturally acquired antibody responses against the GMZ2 malaria vaccine candidate and constituent antigens. BMC Infect Dis 21:332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dassah S, Adu B, Sirima SB et al (2021) Extended follow-up of children in a phase2b trial of the GMZ2 malaria vaccine. Vaccine 39:4314–4319

    Article  CAS  PubMed  Google Scholar 

  19. Garcia-Senosiain A, Kana IH, Singh SK et al (2020) Peripheral Merozoite surface proteins are targets of naturally acquired immunity against malaria in both India and Ghana. Infect Immun 88(4):e00778–e00719

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jepsen MP, Jogdand PS, Singh SK et al (2013) The malaria vaccine candidate GMZ2 elicits functional antibodies in individuals from malaria endemic and non-endemic areas. J Infect Dis 208:479–488

    Article  CAS  PubMed  Google Scholar 

  21. Jones S, Grignard L, Nebie I et al (2015) Naturally acquired antibody responses to recombinant Pfs230 and Pfs48/45 transmission blocking vaccine candidates. J Infect 71:117–127

    Article  PubMed  Google Scholar 

  22. Kana IH, Adu B, Tiendrebeogo RW et al (2017) Naturally acquired antibodies target the glutamate-rich protein on intact merozoites and predict protection against febrile malaria. J Infect Dis 215:623–630

    Article  CAS  PubMed  Google Scholar 

  23. Kana IH, Garcia-Senosiain A, Singh SK et al (2018) Cytophilic antibodies against key plasmodium falciparum blood stage antigens contribute to protection against clinical malaria in a high transmission region of Eastern India. J Infect Dis 218:956–965

    Article  CAS  PubMed  Google Scholar 

  24. Kana IH, Singh SK, Garcia-Senosiain A et al (2019) Breadth of functional antibodies is associated with plasmodium falciparum merozoite phagocytosis and protection against febrile malaria. J Infect Dis 220:275–284

    Article  CAS  PubMed  Google Scholar 

  25. Stone WJR, Campo JJ, Ouedraogo AL et al (2018) Unravelling the immune signature of Plasmodium falciparum transmission-reducing immunity. Nat Commun 9:558

    Article  PubMed  PubMed Central  Google Scholar 

  26. Singh SK, Plieskatt J, Chourasia BK et al (2020) A reproducible and scalable process for manufacturing a Pfs48/45 based Plasmodium falciparum transmission-blocking vaccine. Front Immunol 11:606266

    Article  CAS  PubMed  Google Scholar 

  27. Singh SK, Plieskatt J, Chourasia BK et al (2021) Preclinical development of a Pfs230-Pfs48/45 chimeric malaria transmission-blocking vaccine. NPJ Vaccines 6:120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Theisen M, Adu B, Mordmuller B et al (2017) The GMZ2 malaria vaccine: from concept to efficacy in humans. Expert Rev Vaccines 16:907–917

    Article  CAS  PubMed  Google Scholar 

  29. Carvalho LJ, Alves FA, Bianco C Jr et al (2005) Immunization of Saimiri sciureus monkeys with a recombinant hybrid protein derived from the Plasmodium falciparum antigen glutamate-rich protein and merozoite surface protein 3 can induce partial protection with Freund and Montanide ISA720 adjuvants. Clin Diagn Lab Immunol 12:242–248

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Carvalho LJ, Oliveira SG, Theisen M et al (2004) Immunization of Saimiri sciureus monkeys with Plasmodium falciparum merozoite surface protein-3 and glutamate-rich protein suggests that protection is related to antibody levels. Scand J Immunol 59:363–372

    Article  CAS  PubMed  Google Scholar 

  31. Belard S, Issifou S, Hounkpatin AB et al (2011) A randomized controlled phase Ib trial of the malaria vaccine candidate GMZ2 in African children. PLoS One 6:e22525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dejon-Agobe JC, Ateba-Ngoa U, Lalremruata A et al (2019) Controlled human malaria infection of healthy adults with lifelong malaria exposure to assess safety, immunogenicity, and efficacy of the asexual blood stage malaria vaccine candidate GMZ2. Clin Infect Dis 69:1377–1384

    Article  CAS  PubMed  Google Scholar 

  33. Esen M, Kremsner PG, Schleucher R et al (2009) Safety and immunogenicity of GMZ2 – a MSP3-GLURP fusion protein malaria vaccine candidate. Vaccine 27:6862–6868

    Article  CAS  PubMed  Google Scholar 

  34. Esen M, Mordmuller B, De Salazar PM et al (2012) Reduced antibody responses against Plasmodium falciparum vaccine candidate antigens in the presence of Trichuris trichiura. Vaccine 30:7621–7624

    Article  CAS  PubMed  Google Scholar 

  35. Mordmuller B, Szywon K, Greutelaers B et al (2010) Safety and immunogenicity of the malaria vaccine candidate GMZ2 in malaria-exposed, adult individuals from Lambarene, Gabon. Vaccine 28:6698–6703

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sirima SB, Mordmuller B, Milligan P et al (2016) A phase 2b randomized, controlled trial of the efficacy of the GMZ2 malaria vaccine in African children. Vaccine 34:4536–4542

    Article  CAS  PubMed  Google Scholar 

  37. Gasson MJ (1983) Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Miyoshi A, Poquet I, Azevedo V et al (2002) Controlled production of stable heterologous proteins in Lactococcus lactis. Appl Environ Microbiol 68:3141–3146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Poquet I, Saint V, Seznec E et al (2000) HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol Microbiol 35:1042–1051

    Article  CAS  PubMed  Google Scholar 

  40. Simon D, Chopin A (1988) Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. Biochimie 70:559–566

    Article  CAS  PubMed  Google Scholar 

  41. Bredmose L, Madsen SM, Vrang A et al (2001) Development of a heterologous gene expression system for use in Lactococcus lactis. In: Merten O-W, Mattanovich D, Lang C, Larsson G, Neubauer P, Porro D, Postma P, Teixeira de Mattos J, Cole JA (eds) Recombinant protein production with prokaryotic and eukaryotic cells. Springer, Dordrecht, pp 269–275

    Google Scholar 

  42. Madsen SM, Arnau J, Vrang A et al (1999) Molecular characterization of the pH-inducible and growth phase-dependent promoter P170 of Lactococcus lactis. Mol Microbiol 32:75–87

    Article  CAS  PubMed  Google Scholar 

  43. Ravn P, Arnau J, Madsen SM et al (2003) Optimization of signal-peptide SP310 for heterologous protein production in Lactococcus lactis. Microbiology 149:2193–2201

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support granted by Danish Council for Strategic research (Grants 13127) and the Department of Biotechnology (DBT), Government of India (BT/IN/Denmark/13/SS/2013), European Union’s Horizon 2020 research and innovation program under grant agreement No. 733273, and the European and Developing Countries Clinical Trials Partnership (RIA2018SV-2311). SKS is supported by a DHR-NRI fellowship at ICMR. The authors also acknowledge funding from BIRAC-NBM, and the support of Director, ICMR-RMRC, Bhubaneswar, India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Singh, S.K., Naghizadeh, M., Plieskatt, J., Singh, S., Theisen, M. (2023). Cloning and Recombinant Protein Expression in Lactococcus lactis. In: Sousa, Â., Passarinha, L. (eds) Advanced Methods in Structural Biology. Methods in Molecular Biology, vol 2652. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3147-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3147-8_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3146-1

  • Online ISBN: 978-1-0716-3147-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics