Skip to main content
Log in

The structure of the lipid A component of Sphaerotilus natans

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The lipopolysaccharide of Sphaerotilus natans afforded a ladder-like pattern of bands in sodium deoxycholate-polyacrylamide gel electrophoresis, indicating the presence of a S-form lipopolysaccharide. The chemical analysis showed neutral sugars (rhamnose, glucose, l-glycero-d-manno-heptose), 3-deoxy-octulosonic acid (Kdo), amino compounds (glucosamine, glucosamine phosphate, ethanolamine and ethanolamine phosphate), and phosphorus. The lipid A fraction contained saturated and unsaturated capric, lauric, and myristic acids, and 3-hydroxy capric acid (3-OH-10:0). Its chemical structure was consisting of a glucosamine disaccharide, glycosidically substituted by a phosphomonoester, and substituted at C-4′ by a pyrophosphodiester esterified with ethanolamine. The amino groups of both glucosamines are acylated by 3-hydroxy capric acids and these in turn are substituted by saturated and unsaturated capric, lauric, and myristic acids. Hydroxyl groups of the backbone disaccharide at C-3 and C-3′ were also esterified by 3-hydroxy capric acid, those at C-4 and C-6 were unsubstituted. The latter provides the attachment site for Kdo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Kdo:

3-deoxy-d-manno-octulosonic acid

3-OH-10:0:

3-hydroxy capric acid

DOC-PAGE:

deoxycholate-polyacrylamide gel electrophoresis

GC-MS:

gas chromatography/mass spectrometry

LD-MS:

laser desorption mass spectrometry

LPS:

lipopolysaccharide

PS:

polysaccharide

References

  • Batley M, Packer NH, Redmond JW (1985) Analytical studies of lipopolysaccharide and its derivatives from Salmonella minnesota R595 I. Phosphorus magnetic resonance spectra. Biochim Biophys Acta 821:179–194

    Article  CAS  Google Scholar 

  • Bhat RU, Kontrohr T, Mayer H (1987) Structure of Shigella sonnei lipid A. FEMS Microbiol Lett 40:189–192

    Article  Google Scholar 

  • Bochner BR, Maron DM, Ames BN (1981) Detection of phosphate esters on chromatograms: an improved reagent. Anal Biochem 117:81–83

    Article  CAS  Google Scholar 

  • Brade H, Brade L, Rietschel ETh (1988) Structure-activity relationships of bacterial lipopolysaccharides (Endotoxins). Current and future aspects. Zentralbl Bacteriol Mikrobiol Hyg [A] 268:151–179

    CAS  Google Scholar 

  • Cotter RJ, Honovich J, Qureshi N, Takayama K (1987) Structural determination of lipid a from Gram-negative bacteria using laser desorption mass spectrometry. Biomed Environ Mass Spectrom 14:591–598

    Article  CAS  Google Scholar 

  • Galanos C, Lüderitz O (1975) Electrodialysis of lipopolysaccharides and their conversion to uniform salt form. Eur J Biochem 54:603–610

    Article  CAS  Google Scholar 

  • Galanos C, Rietschel ETh, Lüderitz O, Westphal O, Kim YB, Watson DW (1972) Biological activities of lipid A complexed with bovine-serum albumin. Eur J Biochem 31:230–233

    Article  CAS  Google Scholar 

  • Galanos C, Roppel J, Weckesser J, Rietschel ETh, Mayer H (1977) Biological activities of lipopolysaccharides and lipid A from Rhodospirillaceae. Infect Immun 16:407–412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galanos C, Freudenberg MA, Reutter W (1979) Galactosamine-induced sensitization to the lethal effects of endotoxin. Proc Natl Acad Sci USA 76:5939–5943

    Article  CAS  Google Scholar 

  • Hakomori SI (1964) A rapid permethylation of glycolipid and polysaccharide catalyzed by methylsulfinyl carbanion in dimethylsulfoxide. J Biochem 55:205–208

    CAS  PubMed  Google Scholar 

  • Hase S, Rietschel ETh (1976) Isolation and analysis of the lipid backbone: lipid A structure of lipopolysaccharides from various bacterial groups. Eur J Biochem 63:101–107

    Article  CAS  Google Scholar 

  • Jensen M, Borowiak D, Paulsen H, Rietschel ETh (1979) Analysis of permethylated glucosaminyl-glucosaminitol disaccharides by combined gas-liquid chromatography mass spectrometry. Biomed Mass Spectrom 6:559–565

    Article  CAS  Google Scholar 

  • Jiao B (1988) Fractionation of smooth form lipopolysaccharide (Endotoxin): Chemical and biological characterization of the fraction and their lipid A. Doctoral thesis, Univ Freiburg, FRG

    Google Scholar 

  • Keleti G, Lederer WH (1974) Handbook of micromethods for the biological science. Van Nostrand Reinhold, New York Cincinati Toronto London Melbourne

    Google Scholar 

  • Komuro T, Galanos C (1988) Analysis of Salmonella lipopolysaccharides by sodium deoxycholate-polyacrylamide gel electrophoresis. J Chromatogr 450:381–387

    Article  CAS  Google Scholar 

  • Krasikova IN, Grobach VI, Isakov VV, Soloveva TF, Ovodov YS (1982) The application of 13C-NMR spectroscopy to study lipid A from Yersinia pseudotuberculosis lipopolysaccharide. Eur J Biochem 126:349–351

    Article  CAS  Google Scholar 

  • Krauss JH, Weckesser J, Mayer H (1988) Electrophoretic analysis of lipopolysaccharides of purple nonsulfur bacteria. Int J Syst Bacteriol 38:157–163

    Article  CAS  Google Scholar 

  • Kuhn HM (1981) Immunchemische Untersuchungen am Enterobacterial Common Antigen (ECA). Doctoral thesis, Univ Freiburg, FRG

    Google Scholar 

  • Lindner B, Seydel U (1985) Laser desorption mass spectrometry of nonvolatiles under shock wave conditions. Anal Chem 57:895–899

    Article  CAS  Google Scholar 

  • Lindner B, Zähringer U, Rietschel ETh, Seydel U (1990) Structural elucidation of lipopolysaccharides and their lipid A component: application of soft ionization mass spectrometry. In: Cox A, Morgan SL, Larsson L, Odham G (eds) Analytical microbiology methods. Plenum Press, New York, pp 149–160

    Chapter  Google Scholar 

  • Lowry OH, Roberts NR, Leiner KY, Wu M, Farr L (1954) The quantitative histochemistry of brain. I. Chemical methods. J Biol Chem 207:1–14

    CAS  PubMed  Google Scholar 

  • Lüderitz O, Freudenberg MA, Galanos C, Lehmann V, Rietschel ETh, Shaw DH (1982) Lipopolysaccharides of Gram-negative bacteria. Curr Top Membr Transp 17:79–151

    Article  Google Scholar 

  • Lüderitz O, Galanos C, Rietschel RTh, Westphal O (1986) Lipid A: relationships of chemical structure and biological activity. In: Szentivany A, Friedman H (eds) Immunology and immunopharmacology of bacterial endotoxins. Plenum Publishing, New York, pp 65–74

    Chapter  Google Scholar 

  • Mayer H, Tharanathan RW, Weckesser J (1985) Analysis of lipopolysacharides of Gram-negative bacteria. Methods Microbiol 18:157–207

    Article  CAS  Google Scholar 

  • Mayer H, Masoud H, Urbanik-Sypniewska T, Weckesser J (1989a) Lipid A composition and phylogeny of Gram-negative bacteria. Bull JFCC 5:19–25

    Google Scholar 

  • Mayer H, Bhat UR, Masoud H, Radziejewska-Lebrecht J, Widemann C, Krauss JH (1989b) Bacterial lipopolysaccharides. Pure Appl Chem 61:1271–1282

    Article  CAS  Google Scholar 

  • Mayer H, Krauss JH, Yokota A, Weckesser J (1990) Natural variants of lipid A. In: Friedman H, Klein TW, Nakano M, Nowotny A (eds) “Endotoxin”. Plenum Press, New York, Vol 256, pp 45–70

    Chapter  Google Scholar 

  • Mühlradt PF, Wray V, Lehmann V (1977) A 31P-nuclear magnetic resonance study of the phosphate groups in lipopolysaccharide and lipid A from Salmonella. J Biol Chem 81:193–203

    Google Scholar 

  • Nikaido H (1970) Lipopolysaccharide in the taxonomy of Enterobacteriaceae. Int J Syst Bacteriol 20:383–406

    Article  CAS  Google Scholar 

  • Ohno K, Nishiyama H, Nagase H (1979) A mild methylation of alcohols with diazomethane catalyzed by silica gel, Tetrahedron Lett 45:4405–4406

    Article  Google Scholar 

  • Qureshi N, Cotter RJ, Takayama K (1986) Application of fast atom bombardement mass spectrometry and nuclear magnetic resonance on the structural analysis of purified lipid A. J Microbiol Meth 5:65–77

    Article  CAS  Google Scholar 

  • Rietschel ETh, Wollenweber HW, Brade H, Zähringer U, Lindner B, Seydel U, Bradaczek H, Barnickel G, Labischinski H, Giesbrecht P (1984a) Structure and conformation of the lipid A component of lipopolysaccharides. In: Rietschel ETh (ed) Chemistry of endotoxin. Elsevier, Amsterdam New York Oxford, pp 187–220

    Google Scholar 

  • Rietschel ETh, Wollenweber HW, Russa R, Brade H, Zähringer U, (1984b) Concepts on the chemical structure of lipid A. Rev Infect Dis 6:432–438

    Article  CAS  Google Scholar 

  • Rietschel ETh, Brade L, Schade U, Seydel U, Zähringer U, Kusumoto S, Brade H, (1987) Bacterial endotoxin: properties and structure of biologically active domains. In: Schrinner E, Richmond MH, Seibert G, Schwarz U (eds) Surface structures of microorganisms and their interactions with the mammalian host. Proc Workshop Conf Hoechst. Verlag Chemie, Weinheim, pp 1–41

    Google Scholar 

  • Rosner MR, Khorana HG, Satterthwait AC (1979a) The structure of lipopolysaccharide from a heptose-less mutant of Escherichia coli K-12. II. The application of 31P-NMR spectroscopy. J Biol Chem 254:5918–5925

    CAS  Google Scholar 

  • Rosner MR, Tang JY, Brazilay I, Khorana HG (1979b) Structure of the lipopolysaccharide from an Escherichia coli heptose-less mutant. I. Chemical degradation and identification of products. J Biol Chem 254:5906–5917

    CAS  PubMed  Google Scholar 

  • Salimath PV, Weckesser J, Strittmatter W, Mayer H (1983) Structural studies on the non-toxic lipid a from Rhodopseudomonas sphaeroides ATCC 17023. Eur J Biochem 136:180–195

    Article  Google Scholar 

  • Seydel U, Lindner B, Wollenweber HW, Rietschel ETh (1984) Structural studies on the lipid A component of enterobacterial lipopolysaccharides by laser desorption mass spectrometry: Location of acyl groups at the lipid A backbone. Eur J Biochem 145:505–509

    Article  CAS  Google Scholar 

  • Shiba T, Dusumoto S (1984) Chemical synthesis and biological activity of lipid A analogs: In: Rietschel ETh (ed) Handbook of endotoxin: chemistry of endotoxin. Elsevier, Amsterdam New York Oxford, pp 284–307

    Google Scholar 

  • Shiba T, Kusumoto S, Inage M, Chaki H, Shimamoto T (1984) Recent developments in the organic synthesis of lipid A in relation to biologic activities. Res Infect Dis 6:478–482

    Article  CAS  Google Scholar 

  • Stackebrandt E, Murray RGE, Trüper HG (1988) Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives’. Int J Syst Bacteriol 38:321–325

    Article  Google Scholar 

  • Steinbüchel A (1989) Poly(hydroxyfettsäuren)-Speicherstoffe von Bakterien: Biosynthese und Genetik. Forum Mikrobiol 12:190–198

    Google Scholar 

  • Strittmatter W, Weckesser J, Salimath PV, Galanos C (1983) Nontoxic lipopolysaccharide from Rhodopseudomonas sphaeroides ATCC 17023. J Bacteriol 155:153–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tharanathan RN, Weckesser J, Strittmatter W, Mayer H (1983) Structural studies on the d-arabinose containing lipid A from Rhodospirillum tenue 2761. Eur J Biochem 136:175–180

    Article  Google Scholar 

  • Tharanathan RN, Salimath PV, Weckesser J, Mayer H (1985) The structure of lipid A from the lipopolysaccharide of Rhodopseudomonas gelatinosa 29/1. Arch Microbiol 141:279–283

    Article  CAS  Google Scholar 

  • Tsai CM, Frasch CE (1982) A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119:115–119

    Article  CAS  Google Scholar 

  • Weckesser J, Mayer H (1988) Different lipid A types in lipopolysaccharides of phototrophic and related non-phototrophic bacteria. FEMS Microbiol Rev 54:143–154

    Article  CAS  Google Scholar 

  • Weckesser J, Mayer H, Drews G, Fromme I (1975) Lipophilic O-antigens containing d-glycero-d-manno-heptose as the sole neutral sugar in Rhodopseudomonas gelatinosa. J Bacteriol 123:449–455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Westphal O, Lüderitz O, Bister F (1952) Über die Extraktion von Bakterien mit Phenol/Wasser. Z Naturforsch [c] 7b:148–155

    Article  CAS  Google Scholar 

  • Woese CR, Weisburg WG, Paster BJ, Hahn CM, Tanner RS, Krieg NR, Koops HP, Harms H, Stackebrandt E (1984) The phylogeny of purple bacteria: The beta subdivision. Syst Appl Microbiol 5:327–336

    Article  CAS  Google Scholar 

  • Wollenweber HW, Broady K, Lüderitz O, Rietschel ETh (1982) The chemical structure of lipid A: Demonstration of amide-linked 3-acyl-oxyacyl residues in Salmonella minnesota Re lipopolysaccharide. Eur J Biochem 124:191–198

    Article  CAS  Google Scholar 

  • Wollenweber HW, Seydel U, Lindner B, Lüderitz O, Rietschel ETh (1984) Nature and location of amide-bound (R)-3-acyloxyacyl group in lipid A of lipopolysaccharides from various Gram-negative bacteria. Eur J Biochem 145:265–272

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masoud, H., Urbanik-Sypniewska, T., Lindner, B. et al. The structure of the lipid A component of Sphaerotilus natans . Arch. Microbiol. 156, 167–175 (1991). https://doi.org/10.1007/BF00249110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00249110

Key words

Navigation