Skip to main content
Log in

Growth yield increase and ATP formation linked to succinate decarboxylation in Veillonella parvula

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Veillonella parvula strain 259 (=DSM 2007) was able to grow on a mineral salts medium supplemented with (per litre) 1 g yeast extract, 1 g Tween-80, and 3 mg putrescine. 2 HCl, with 6 mM thioglycolate as reductant and lactate as growth substrate. Succinate did not serve as a growth substrate, but when added in conjunction with lactate, it was decarboxylated to propionate and resulted in a measurable increase in growth yield, corresponding to the formation of 2.4 g cell dry mass per mol succinate. A growth yield increase linked to succinate metabolism occurred only while lactate was also being metabolised. Experiments with cell suspensions showed that succinate decarboxylating activity was constitutive. Addition of succinate produced clear increases in cellular ATP levels in ATP-depleted washed cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MOPS:

3-(N-morpholino) propanesulfonic acid

References

  • Blaut M, Gottschalk G (1984) Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen in Methanosarcina barkeri. Eur J Biochem 141: 217–222

    Article  CAS  PubMed  Google Scholar 

  • Breznak JA, Switzer JM, Seitz HJ (1988) Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch Microbiol. 150: 282–288

    Article  CAS  Google Scholar 

  • Brulla WJ, Bryant MP (1989) Growth of the syntrophic acetogen, strain PA-1, with glucose or succinate as energy source. Appl Environ Microbiol 55: 1289–1290

    CAS  PubMed  Google Scholar 

  • Dehning I, Stieb M, Schink B (1989) Sporomusa malonica sp. nov., a homoacetogenic bacterium growing by decarboxylation of malonate or succinate. Arch Microbiol 151: 421–426

    CAS  Google Scholar 

  • Denger K, Schink B (1990) New motile anaerobic bacteria growing by succinate decarboxylation to propionate. Arch Microbiol 154: 550–555

    Article  CAS  Google Scholar 

  • Deutsche Sammlung von Mikroorganismen (1989) Catalogue of strains, 4th edn. GBF, Braunschweig, FRG

    Google Scholar 

  • deVries W, Rietveld-Struijk RM, Stouthamer AH (1977) ATP formation associated with fumarate and nitrate reduction in growing cultures of Veillonella alcalescens. Antonie van Leeu-wenhoek J Microbiol Serol 43: 153–167

    Google Scholar 

  • Galivan JH, Allen SHJ (1968) Methylmalonyl coenzyme A decarboxylase. Its role in succinate decarboxylation by Micrococcus lactilyticus. J Biol Chem 243: 1253–1261

    CAS  PubMed  Google Scholar 

  • Hamilton WA (1988) Energy-transduction in anaerobic bacteria. In: Anthony A (ed) Bacterial energy transduction. Academic Press, London, pp. 83–149

    Google Scholar 

  • Hilpert W, Dimroth P (1982) Conversion of the chemical energy of methylmalonyl-CoA decarboxylation into a Na+ gradient. Nature 296: 584–585

    Article  CAS  PubMed  Google Scholar 

  • Hilpert W, Dimroth P (1983) Purification and characterization of a new sodium-transport decarboxylase. Methlmalonyl-CoA decarboxylase from Veillonella alcalescens. Eur J Biochem 132: 579–587

    Article  CAS  PubMed  Google Scholar 

  • Hilpert W, Dimroth P (1991) On the mechanism of sodium ion translocation by methylmalonyl-CoA decarboxylase from Veillonella alcalescens. Eur J Biochem 195: 79–86

    Article  CAS  PubMed  Google Scholar 

  • Hilpert W, Schink B, Dimroth P (1984) Life by a new decarboxylation-dependent energy conservation mechanism with Na+ as coupling ion. EMBO J 3: 1665–1670

    CAS  PubMed  Google Scholar 

  • Janssen PH (1990) Fermentation of glycollate by a mixed culture of anaerobic bacteria. Syst Appl Microbiol 13: 327–332

    CAS  Google Scholar 

  • Janssen PH (1991) Characterization of a succinate-fermenting anaerobic bacterium isolated from a glycolate-degrading mixed culture. Arch Microbiol 155: 288–293

    CAS  Google Scholar 

  • Janssen PH, Harfoot CG (1990a) Ilyobacter delafieldii sp. nov., a metabolically restricted anaerobic bacterium fermenting PHB. Arch Microbiol 154: 253–259

    Article  CAS  Google Scholar 

  • Janssen PH, Harfoot CG (1990b) Isolation of a Citrobacter species able to grow on malonate under strictly anaerobic conditions. J Gen Microbiol 136: 1037–1042

    CAS  PubMed  Google Scholar 

  • Laubinger W, Dimroth P (1989) The sodium ion translocating adenosinetriphosphatase of Propionigenium modestum pumps protons at low sodium ion concentrations. Biochemistry 28: 7194–7198

    Article  CAS  PubMed  Google Scholar 

  • Lundin A, Thore A (1975) Analytical information obtainable by evaluation of the time course of firefly bioluminescence in the assay of ATP. Anal Biochem 66: 47–63

    Article  CAS  PubMed  Google Scholar 

  • Ng SKC, Hamilton IR (1971) Lactate metabolism by Veillonella parvula. J Bacteriol 105: 999–1005

    CAS  PubMed  Google Scholar 

  • Olliver B, Cord-Ruwisch R, Lombardo A, Garcia JL (1985) Isolation and characterization of Sporomusa acidovorans sp. nov., a methylotrophic homoacetogenic bacterium. Arch Microbiol 142: 307–310

    Google Scholar 

  • Patel BKC, Monk C, Littleworth H, Morgan HW, Daniel RM (1987) Clostridium fervidus sp. nov., a new chemoorganotrophic acetogenic thermophile. Int J Syst Bacteriol 37: 123–126

    CAS  Google Scholar 

  • Rogosa M, Bishop FS (1964) The genus Veillonella. II. Nutritional studies. J. Bacteriol 87: 574–580

    CAS  PubMed  Google Scholar 

  • Schink B (1990) Conservation of small amounts of energy in fermenting bacteria. In: Finn RK, Präve P (eds) Biotechnology focus 2. Hanser Publishers, Munich, pp. 63–89

    Google Scholar 

  • Schink B, Pfennig N (1982) Propionigenium modestum gen. nov., sp. nov. a new strictly anaerobic, nonsporing bacterium growing on succinate. Arch Microbiol 133: 209–216

    CAS  Google Scholar 

  • Stouthamer AH, (1979) The search for correlation between theoretical and experimental growth yields. In: Quayle JR (ed) International review of biochemistry, vol 21. Microbial biochemistry. University Park Press, Baltimore, pp. 1–47

    Google Scholar 

  • Tanaka B, Nakamura K, Mikami K (1990) Fermentation of maleate by a Gram-negative strictly anaerobic non-sporeformer, Propionivibrio dicarboxylicus gen. nov., sp. nov. Arch Microbiol. 154: 323–328

    Article  CAS  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41: 100–180

    CAS  PubMed  Google Scholar 

  • Yousten AA, Delwiche EA (1961) Biotin and vitamin B12 coenzymes in succinate decarboxylation by Propionibacterium pentosaceum and Veillonella alcalescens. Bacteriol Proc 61: 175

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janssen, P.H. Growth yield increase and ATP formation linked to succinate decarboxylation in Veillonella parvula . Arch. Microbiol. 157, 442–445 (1992). https://doi.org/10.1007/BF00249102

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00249102

Key words

Navigation