Skip to main content
Log in

Fermentation of S-citramalate, citrate, mesaconate, and pyruvate by a gram-negative strictly anaerobic non-spore-former, Formivibrio citricus gen. nov., sp. nov.

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Two strains of S-citramalate-fermenting strictly anaerobic non-spore-formers were isolated in pure culture from anoxic mud samples of a creek and from a pond. One of them (strain CreCit 1) was studied in detail. It stained gram-negative, and contained β-hydroxymyristic acid. Nitrate, sulfate and other sulfur compounds were not utilized as electron acceptors. S-citramalate, citrate, mesaconate, and pyruvate were utilized as substrates; but R-citramalate, citraconate, l-glutamate, and carbohydrates not. S-citramalate was fermented to acetate, formate, and hydrogen. Citrate, mesaconate, and pyruvate were fermented to acetate and formate. The DNA base ratio was 59 mol% guanine plus cytosine. Strain CreCit 1 is described as a member of a new genus and a new species in the family Bacteroidaceae, Formivibrio citricus gen. nov., sp. nov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison MJ, Dawson KA, Mayberry WR, Foss JG (1985) Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch Microbiol 141: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Antranikian G, Friese C, Quentmeier A, Hippe H, Gottschalk G (1984) Distribution of the ability for citrate utilization amongst Clostridia. Arch Microbiol 138: 179–182

    Article  CAS  Google Scholar 

  • Blenden DC, Goldberg HS (1965) Silver impregnation stain for Leptospira and flagella. J Bacteriol 89: 899–900

    PubMed  CAS  Google Scholar 

  • Bryant MP, Small N (1956) Characteristics of two new genera of anaerobic curved rods isolated from the rumen of cattle. J Bacteriol 72: 22–26

    PubMed  CAS  Google Scholar 

  • Bryant MP (1972) Commentary on Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 25: 1324–1328

    PubMed  CAS  Google Scholar 

  • Bryant MP (1984) Genus XIII Lachnospira In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey's mannual of systematic bacteriology, Williams & Wilkins, Baltimore, pp 661–662

    Google Scholar 

  • Buckel W, Barker HA (1974) Two pathways of glutamate fermentation by anaerobic bacteria. J Bacteriol 117: 1248–1260

    PubMed  CAS  Google Scholar 

  • Cataldo DA, Haroon M, Schrader LE, Young VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6: 71–80

    Article  CAS  Google Scholar 

  • Cline E (1969) Spectrophotometric determination of hydrogensulfide in natural waters. Limmnol Oceanogr 14: 454–458

    CAS  Google Scholar 

  • Dehning I, Schink B (1989) Two new species of anaerobic oxalate-fermenting bacteria, Oxalobacter vibrioformis sp. nov. and Clostridium oxalicum sp. nov., from sediment samples. Arch Microbiol 153: 79–84

    Article  CAS  Google Scholar 

  • Hollaus F, Sleytr U (1972) On the taxonomy and fine structure of some hyperthermophilic saccharolytic clostridia. Arch Mikrobiol 86: 129–146

    Article  PubMed  CAS  Google Scholar 

  • Hoskins JK (1934) Most probable numbers for evaluation of coli-aerogenes tests by fermentation tube method. Public Health Rep Washington 49: 393–405

    CAS  Google Scholar 

  • Klemps R, Cypionka H, Widdel F, Pfennig N (1985) Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species. Arch Microbiol 143: 203–208

    Article  CAS  Google Scholar 

  • Lechevalier H (1977) Lipids in bacterial taxonomy — a taxonomists view. CRC Crit Rev Microbiol 5: 109–210

    PubMed  CAS  Google Scholar 

  • Magee CM, Rodeheaver G, Edgerton FR (1975) A more reliable Gram staining technique for diagnosis of surgical infections. Am J Surg 130: 341–346

    Article  PubMed  CAS  Google Scholar 

  • Patel GB, Khan AW, Agnew BJ, Colvin JR (1980) Isolation and characterization of an anaerobic, cellulolytic microorganism, Acetivibrio cellulolyticus gen. nov. sp. nov. Int J Syst Bacteriol 30: 179–185

    CAS  Google Scholar 

  • Patel GB (1984) Genus XII Acetivibrio In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds), Bergey's mannual of systematic bacteriology, Williams & Wilkins, Baltimore, pp 658–661

    Google Scholar 

  • Pfennig N (1978) Rhodococcus purpureus gen. nov. and sp. nov., a ringshaped vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 28: 283–288

    Article  CAS  Google Scholar 

  • Schlegel HG (1985)Allgemeine Mikrobiologie, (6th edn). Thieme, Stuttgart, pp 295–296

    Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36: 407–477

    PubMed  CAS  Google Scholar 

  • Seitz H-J, Cypionka H (1986) Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite. Arch Microbiol 146: 63–67

    Article  CAS  Google Scholar 

  • Stieb M, Schink B (1984) A new 3-hydroxybutyrate fermenting anaerobe, Ilyobacter polytropus, gen. nov., sp. nov., possessing various fermentation pathways. Arch Microbiol 140: 139–146

    Article  CAS  Google Scholar 

  • Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25: 125–128

    Article  CAS  Google Scholar 

  • Tanaka K, Pfennig N (1988) Fermentation of 2-methoxyethanol by Acetobacterium malicum sp. nov. and Pelobacter venetianus. Arch Microbiol 149: 181–187

    Article  CAS  Google Scholar 

  • Tanaka K, Nakamura K, Mikami E (1990a) Fermentation of maleate by a gram-negative strictly anaerobic non-spore-former, Propionivibrio dicarboxylicus gen. nov., sp. nov. Arch Microbiol 154: 323–328

    Article  CAS  Google Scholar 

  • Tanaka K, Nakamura K, Mikami E (1990b) Fermentation of cinnamate by a mesophilic strict anaerobe, Acetivibrio multivorans sp. nov. Arch Microbiol 155: 120–124

    Article  Google Scholar 

  • Tschech A, Pfennig N (1984) Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol 137: 163–167

    Article  CAS  Google Scholar 

  • Widdel F, Pfennig N (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129: 395–400

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, K., Nakamura, K. & Mikami, E. Fermentation of S-citramalate, citrate, mesaconate, and pyruvate by a gram-negative strictly anaerobic non-spore-former, Formivibrio citricus gen. nov., sp. nov.. Arch. Microbiol. 155, 491–495 (1991). https://doi.org/10.1007/BF00244967

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00244967

Key words

Navigation