Skip to main content
Log in

Coenzyme F420 dependent N5, N10-methylenetetrahydromethanopterin dehydrogenase in methanol grown Methanosarcina barkeri

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The dehydrogenation of N 5,N 10-methylenetetrahydromethanopterin (CH2=H4MPT) to N 5,N 10-methenyltetrahydromethanopterin (CH≡H4MPT+) is an intermediate step in the oxidation of methanol to CO2 in Methanosarcina barkeri. The reaction is catalyzed by CH2=H4MPT dehydrogenase, which was found to be specific for coenzyme F420 as electron acceptor; neither NAD, NADP nor viologen dyes could substitute for the 5-deazaflavin. The dehydrogenase was anaerobically purified almost 90-fold to apparent homogeneity in a 32% yield by anion exchange chromatography on DEAE Sepharose and Mono Q HR, and by affinity chromatography on Blue Sepharose. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed only one protein band with an apparent mass of 31 kDa. The apparent molecular mass of the native enzyme determined by polyacrylamide gradient gel electrophoresis was 240 kDa. The ultraviolet/visible spectrum of the purified enzyme was almost identical to that of albumin suggesting the absence of a chromophoric prosthetic group. Reciprocal plots of the enzyme activity versus the substrate concentrations were linear: the apparent K m for CH2=H4MPT and for coenzyme F420 were found to be 6 μM and 25 μM, respectively. Vmax was 4,000 μmol min-1·mg-1 protein (kcat=2,066 s-1) at pH 6 (the pH optimum) and 37°C. The Arrhenius activation energy was 40 kJ/mol. The N-terminal amino acid sequence was found to be 50% identical with that of the F420-dependent CH2=H4MPT dehydrogenase isolated from H2/CO2 grown Methanobacterium thermoautotrophicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: Reevaluation of a unique biological group. Microbiol Rev 43: 260–296

    PubMed  CAS  Google Scholar 

  • Barlowe CK, Appling DR (1990) Isolation and characterization of a novel eukaryotic monofunctional NAD+-dependent 5,10-methylenetetrahydrofolate dehydrogenase. Biochemistry 29: 7089–7094

    Article  PubMed  CAS  Google Scholar 

  • Bélanger C, MacKenzie RE (1989) Isolation and characterization of cDNA clones encoding the murine NAD-dependent methylene-tetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase. J Biol Chem 264: 4837–4843

    PubMed  Google Scholar 

  • Börner G (1988) Isolierung von vier Coenzymen der Methanogenese aus Methanobacterium thermoautotrophicum. Diploma thesis, Faculty of Biology, University of Marburg, Marburg, FRG

  • Breitung J, Thauer RK (1990) Formylmethanofuran: tetrahydromethanopterin formyltransferase from Methanosarcina barkeri: identification of N 5-formyltetrahydromethanopterin as the product. FEBS Lett 275: 226–230

    Article  PubMed  CAS  Google Scholar 

  • Cleland WW (1970) Steady-state kinetics. In: Boyer PD (ed) The enzymes. Academic Press, New York London, pp 1–65

    Google Scholar 

  • Dev IK, Harvey RJ (1978) A complex of N 5,N 10-methylene-tetrahydrofolate dehydrogenase and N 5,N 10-methenyltetrahydrofolate cyclohydrolase in Escherichia coli. Purification, subunit structure, and allosteric inhibition by N 10-formyltetrahydrofolate. J Biol Chem 253: 4245–4253

    PubMed  CAS  Google Scholar 

  • DiMarco AA, Bobik TA, Wolfe RS (1990) Unusual coenzymes of methanogenesis. Annu Rev Biochem 59: 355–394

    Article  PubMed  CAS  Google Scholar 

  • Fischer R, Thauer RK (1989) Methyltetrahydromethanopterin as an intermediate in methanogenesis from acetate in Methanosarcina barkeri. Arch Microbiol 151: 459–465

    CAS  Google Scholar 

  • Gloss LM, Hausinger RP (1987) Reduction potential characterization of methanogen factor 390. FEMS Microbiol Lett 48: 143–145

    Article  CAS  Google Scholar 

  • Hartzell PL, Zvilius G, Escalante-Semerena JC, Donnelly MI (1985) Coenzyme F420-dependence of the methylenetetrahydromethanopterin dehydrogenase of Methanobacterium thermoautotrophicum. Biochem Biophys Res Commun 133: 884–890

    Article  PubMed  CAS  Google Scholar 

  • Hewick RM, Hunkapiller MW, Hood LE, Dreyer WJ (1981) A gas-liquid solid phase peptide and protein sequenator. J Biol Chem 256: 7990–7997

    PubMed  CAS  Google Scholar 

  • Karrasch M, Bott M, Thauer RK (1989) Carbonic anhydrase activity in acetate grown Methanosarcina barkeri. Arch Microbiol 151: 137–142

    Article  CAS  Google Scholar 

  • Karrasch M, Börner G, Enßle M, Thauer RK (1990a) The molybdoenzyme formylmethanofuran dehydrogenase from Methanosarcina barkeri contains a pterin cofactor. Eur J Biochem 194: 367–372

    Article  PubMed  CAS  Google Scholar 

  • Karrasch M, Börner G, Thauer RK (1990b) The molybdenum cofactor of formylmethanofuran dehydrogenase from Methanosarcina barkeri is a molybdopterin guanine dinucleotide. FEBS Lett 274: 48–52

    Article  PubMed  CAS  Google Scholar 

  • Kopperschläger G, Diezel W, Bierwagen B, Hofmann E (1969) Molekulargewichtsbestimmungen durch Polyacrylamid-Gelelektrophorese unter Verwendung eines linearen Gelgradienten. FEBS Lett 5: 221–224

    Article  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685

    Article  PubMed  CAS  Google Scholar 

  • LeGendre N, Matsudaira P (1988) Direct protein microesequencing from Immobilon-P transfer membrane. Bio Techniques 6: 154–159

    CAS  Google Scholar 

  • Ljungdahl LG, O'Brien WE, Moore MR, Liu MT (1980) Methylenetetrahydrofolate dehydrogenase from Clostridium formicoaceticum and methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase (combined) from Clostridium thermoaceticum. Methods Enzymol 66: 599–609

    Article  PubMed  CAS  Google Scholar 

  • Lovell CR, Przybyla A, Ljungdahl LG (1990) Primary structure of the thermostable formyltetrahydrofolate synthetase from Clostridium thermoaceticum. Biochemistry 29: 5687–5694

    Article  PubMed  CAS  Google Scholar 

  • Ma K, Thauer RK (1990a) N 5,N 10-Methylenetetrahydromethanopterin reductase from Methanosarcina barkeri. FEMS Microbiol Lett 70: 119–124

    CAS  Google Scholar 

  • Ma K, Thauer RK (1990b) Single step purification of methylenetetrahydromethanopterin reductase from Methanobacterium thermoautotrophicum by specific binding to Blue Sepharose CL-6B. FEBS Lett 268: 59–62

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie RE (1984) Biogenesis and interconversion of substituted tetrahydrofolates. In: Blakley RL, Benkovic SJ (eds) Folates and pterins. John Wiley & Sons, New York Chichester Brisbane Toronto Singapore, pp 255–306

    Google Scholar 

  • Mahlmann A, Deppenmeier U, Gottschalk G (1989) Methanofuran-b is required for CO2 formation from formaldehyde by Methanosarcina barkeri. FEMS Microbiol Lett 61: 115–120

    Article  CAS  Google Scholar 

  • Mata ZS de, Rabinowitz JC (1980) Formyl-methenyl-methylenetetrahydrofolate synthetase (combined) from yeast. Biochemical characterization of the protein from an ADE3 mutant lacking the formyltetrahydrofolate synthetase function. J Biol Chem 255: 2569–2577

    PubMed  Google Scholar 

  • Mejia NR, Rios-Orlandi EM, MacKenzie RE (1986) NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase from ascites tumor cells. Purification and properties. J Biol Chem 261: 9509–9513

    PubMed  CAS  Google Scholar 

  • Möller-Zinkhan D, Börner G, Thauer RK (1989) Function of methanofuran, tetrahydromethanopterin, and coenzyme F420 in Archaeoglobus fulgidus. Arch Microbiol 152: 362–368

    Article  Google Scholar 

  • Moore MR, O'Brien WE, Ljundahl LG (1974) Purification and characterization of nicotinamide adenine dinucleotide-dependent methylenetetrahydrofolate dehydrogenase from Clostridium formicoaceticum. J Biol Chem 249: 5250–5253

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay B, Daniels L (1989) Aerobic purification of N 5,N 10-methylenetetrahydromethanopterin dehydrogenase, separated from N 5,N 10-methenyltetrahydromethanopterin cyclohydrolase, from Methanobacterium thermoautotrophicum strain Marburg. Can J Microbiol 35: 499–507

    Article  PubMed  CAS  Google Scholar 

  • Paukert JL, D'Ari Straus L, Rabinowitz JC (1976) Formylmethenyl-methylenetetrahydrofolate synthetase-(combined). An ovine protein with multiple catalytic activities. J Biol Chem 251: 5104–5111

    PubMed  CAS  Google Scholar 

  • Paukert JL, Rabinowitz JC (1980) Formyl-methenyl-methylenetetrahydrofolate synthetase (combined): a multifunctional protein in eucaryotic folate metabolism. Methods Enzymology 66: 616–626

    CAS  Google Scholar 

  • Ragsdale SW, Ljungdahl LG (1984) Purification and properties of NAD-dependent 5,10-methylenetetrahydrofolate dehydrogenase from Acetobacterium woodii. J Biol Chem 259: 3499–3503

    PubMed  CAS  Google Scholar 

  • Schönheit P, Keweloh H, Thauer RK (1981) Factor F420 degradation in Methanobacterium thermoautotrophicum during exposure to oxygen. FEMS Microbiol Lett 12: 347–349

    Article  Google Scholar 

  • Schwörer B, Thauer RK (1991) Activities of formylmethanofuran dehydrogenase, methylenetetrahydromethanopterin dehydrogenase, methylenetetrahydromethanopterin reductase, and heterodisulfide reductase in methanogenic bacteria. Arch Microbiol (in press)

  • Shannon KW, Rabinowitz JC (1988) Isolation and characterization of the Saccharomyces cerevisiae MIS1 gene encoding mitochondrial C1-tetrahydrofolate synthase. J Biol Chem 263: 7717–7725

    PubMed  CAS  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150: 76–85

    Article  PubMed  CAS  Google Scholar 

  • Staben C, Rabinowitz JC (1986) Nucleotide sequence of the Saccharomyces cerevisiae ADE3 gene encoding C1-tetrahydrofolate synthase. J Biol Chem 261: 4629–4637

    PubMed  CAS  Google Scholar 

  • te Brömmelstroet BW, Hensgens CMH, Geerts WJ, Keltjens JT, van der Drift C, Vogels GD (1990) Purification and properties of 5,10-methenyltetrahydromethanopterin cyclohydrolase from Methanosarcina barkeri. J Bacteriol 172: 564–571

    Google Scholar 

  • Thauer RK (1990) Energy metabolism of methanogenic bacteria. Biochim Biophys Acta 1018: 256–259

    Article  CAS  Google Scholar 

  • Uyeda K, Rabinowitz JC (1967) Enzymes of clostridial purine fermentation. Methylenetetrahydrofolate dehydrogenase. J Biol Chem 242: 4378–4385

    PubMed  CAS  Google Scholar 

  • Walsh C (1986) Naturally occurring 5-deazaflavin coenzymes: biological redox roles. Account Chem Res 19: 216–221

    Article  CAS  Google Scholar 

  • Whitehead TR, Park M, Rabinowitz JC (1988) Distribution of 10-formyltetrahydrofolate synthetase in eubacteria. J Bacteriol 170: 995–997

    PubMed  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271

    PubMed  CAS  Google Scholar 

  • Zirngibl C, Hedderich R, Thauer RK (1990) N 5,N 10-methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum has hydrogenase activity. FEBS Lett 261: 112–116

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enßle, M., Zirngibl, C., Linder, D. et al. Coenzyme F420 dependent N5, N10-methylenetetrahydromethanopterin dehydrogenase in methanol grown Methanosarcina barkeri . Arch. Microbiol. 155, 483–490 (1991). https://doi.org/10.1007/BF00244966

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00244966

Key words

Navigation