Skip to main content
Log in

Binding protein dependent transport of C4-dicarboxylates in Rhodobacter capsulatus

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The characteristics of malate transport into aerobically grown cells of the purple photosynthetic bacterium Rhodobacter capsulatus were determined. A single transport system was distinguished kinetically which displayed a Kt value of 2.9 ± 1.2 μM and Vmax of 43 ± 6 nmol · min-1 · mg-1 protein. Competition experiments indicated that the metabolically related C4-dicarboxylates succinate and fumarate are also transported by this system. Malate uptake was sensitive to osmotic shock and evidence from the binding of radiolabelled malate and succinate to periplasmic protein fractions indicated that transport is mediated by a dicarboxylate binding protein. The activity of the transport system was studied as a function of external and internal pH and it was found that a marked activation of uptake occurred at intracellular pH values greater than 7. The use of a high affinity binding protein dependent system to transport a major carbon and energy source suggests that Rhodobacter capsulatus would be capable of obtaining growth sustaining quantities of C4-dicarboxylates even if these were present at very low concentrations in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Kt :

concentration of substrate giving half-maximal rate of transport in intact cells

Dct:

protein complex encoded by dct genes which mediates C4-dicarboxylate transport

pmf:

protonmotive force

References

  • Abee T, Wal FJ van der, Hellingwerf KJ, Konings WN (1989) Binding protein dependent alanine transport in Rhodobacter sphaeroides is regulated by the internal pH. J Bacteriol 171: 5148–5154

    PubMed  CAS  Google Scholar 

  • Ames GF-L, Joshi AK (1990) Energy coupling in bacterial periplasmic permeases. J Bacteriol 172: 4133–4137

    PubMed  CAS  Google Scholar 

  • Clayton RK (1963) Toward the isolation of a photochemical reaction centre in Rhodopseudomonas sphaeroides. Biochim Biophys Acta 75: 312–323

    Article  PubMed  CAS  Google Scholar 

  • Finan TM, Wood JM, Jordan DC (1981) Succinate transport in Rhizobium leguminosarum. J Bacteriol 148: 192–202

    Google Scholar 

  • Furlong CE (1987) Osmotic shock sensitive transport systems. In: Neidhardt F et al. (eds) Escherichia coli and Salmonella typhimurium. ASM Press, Washington DC, pp 768–796

    Google Scholar 

  • Gibson J (1975) Uptake of C4-dicarbxylates and pyruvate by Rhodopseudomonas sphaeroides. J Bacteriol 123: 471–480

    PubMed  CAS  Google Scholar 

  • Gutowski SJ, Rosenberg H (1975) Succinate uptake and related proton movements in Escherichia coli K12. Biochem J 152: 647–654

    PubMed  CAS  Google Scholar 

  • Halestrap AP, Denton RM (1974) Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by α-cyano-4-hydroxycinnamate. Biochem J 138: 313–316

    PubMed  CAS  Google Scholar 

  • Hamblin MJ, Shaw JG, Curson JP, Kelly DJ (1990) Mutagenesis, cloning and complementation analysis of C4-dicarboxylate transport genes from Rhodobacter capsulatus. Mol Microbiol 4: 1567–1574

    PubMed  CAS  Google Scholar 

  • Higgins CF, Gallagher MP, Hyde SC, Mimmack ML, Pearce SR (1990) Periplasmic binding protein-dependent transport systems: the membrane associated components. Philos Trans R Soc Lond [Biol] 326: 353–365

    CAS  Google Scholar 

  • Hillmer P, Gest H (1977) H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. J Bacteriol 129: 724–731

    PubMed  CAS  Google Scholar 

  • Kay WW (1971) Two aspartate transport systems in Escherichia coli. J Biol Chem 246: 7373–7382

    PubMed  CAS  Google Scholar 

  • Kay WW, Kornberg HL (1969) Genetic control of the uptake of C4-dicarboxylic acids by Escherichia coli. FEBS Lett 3: 93–96

    Article  PubMed  CAS  Google Scholar 

  • Karzanov VV, Ivanovsky RN (1980) Sodium dependent succinate uptake in purple bacterium Ectothiorhodospira shaposhnikovii. Biochim Biophys Acta 598: 91–99

    Article  PubMed  CAS  Google Scholar 

  • Kelly DJ (1988) Gram-positive type citrate synthase in the thermophilic green gliding bacterium Chloroflexus aurantiacus. FEMS Microbiol Lett 49: 39–42

    Article  CAS  Google Scholar 

  • Kelly DJ, Hamblin MJ, Shaw JG (1990) Physiology and genetics of C4-dicarboxylate transport in Rhodobacter capsulatus.In: Drews G, Dawes E (eds) Molecular biology of membranebound complexes in phototrophic bacteria. Plenum Press, New York, pp 453–462

    Google Scholar 

  • Lo TCY, Sanwal BD (1975a) Genetic analysis of mutants of Escherichia coli defective in dicarboxylate transport. Mol Gen Genet 140: 303–307

    PubMed  CAS  Google Scholar 

  • Lo TCY, Sanwal BD (1975b) Isolation of the soluble substrate recognition component of the dicarboxylate transport system of Escherichia coli. J Biol Chem 250: 1600–1602

    PubMed  CAS  Google Scholar 

  • Maloney PC, Ambudkar SV, Anantharam V, Sonna LA, Varadhachary A (1990) Anion exchange mechanisms in bacteria. Microbiol Rev 54: 1–17

    PubMed  CAS  Google Scholar 

  • McEwan AG, Ferguson SJ, Jackson JB (1983) Electron flow to dimethylsulphoxide or trimethylamine-N-oxide generates a membrane potential in Rhodopseudomonas capsulata. Arch Microbiol 136: 300–305

    Article  PubMed  CAS  Google Scholar 

  • McEwan AG, Cotton NPJ, Ferguson SJ, Jackson JB (1985) The role of auxiliary oxidants in the maintenance of a balanced redox poise for photosynthesis in bacteria. Biochim Biophys Acta 810: 140–147

    Article  CAS  Google Scholar 

  • Neu HC, Heppel LA (1965) The release of enzymes from Escherichia coli by osmotic shock and duration the formation of spheroplasts.J Biol Chem 240: 3685–3692

    PubMed  CAS  Google Scholar 

  • Pellerin NC, Gest H (1983) Diagnostic features of the photosynthetic bacterium Rhodopseudomonas sphaeroides. Curr Microbiol 9: 339–344

    Article  CAS  Google Scholar 

  • Plate CA (1979) A requirement for membrane potential in active transport of glutamine by Escherichia coli. J Bacteriol 137: 221–225

    PubMed  CAS  Google Scholar 

  • Poolman B, Driessen AJM, Konings WN(1987) Regulation of solute transport in streptococci by external and internal pH values. Microbiol Rev 51: 498–508

    PubMed  CAS  Google Scholar 

  • Quiocho FA (1990) Atomic structures of periplasmic binding proteins and the high-affinity active transport systems in bacteria. Philos Trans R Soc [Biol] 326: 341–351

    CAS  Google Scholar 

  • Ronson CW, Astwood PM, Downie JA (1984) Molecular cloning and genetic organisation of C4-dicarboxylate transport genes from Rhizobium leguminosarum. J Bacteriol 160: 903–909

    PubMed  CAS  Google Scholar 

  • Watson RJ, Chan Y-K, Wheatcroft R, Yang A-F, Han S (1988) Rhizobium meliloti genes required for C4-dicarboxylate transport and symbiotic nitrogen fixation are located on a megaplasmid. J Bacteriol 170: 927–934

    PubMed  CAS  Google Scholar 

  • Weaver PF, Wall JD, Gest H (1975) Characterization of Rhodopseudomonas capsulata. Arch Microbiol 105: 207–216

    Article  PubMed  CAS  Google Scholar 

  • Willis RC, Morris RG, Ciragoklu C, Schellenberg GD, Gerber NH, Furlong CE (1974) Preparation of the periplasmic binding proteins from Salmonella typhimurium and Escherichia coli. Arch Biochem Biophys 161: 64–75

    Article  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271

    PubMed  CAS  Google Scholar 

  • Zannoni D, Ingledew WJ (1983) A functional characterisation of the membrane bound iron sulphur centres of Rhodopseudomonas capsulata. Arch Microbiol 135: 176–181

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, J.G., Kelly, D.J. Binding protein dependent transport of C4-dicarboxylates in Rhodobacter capsulatus . Arch. Microbiol. 155, 466–472 (1991). https://doi.org/10.1007/BF00244963

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00244963

Key words

Navigation